forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathv0.10.0.txt
360 lines (256 loc) · 10.9 KB
/
v0.10.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
.. _whatsnew_0100:
v0.10.0 (December 17, 2012)
---------------------------
This is a major release from 0.9.1 and includes many new features and
enhancements along with a large number of bug fixes. There are also a number of
important API changes that long-time pandas users should pay close attention
to.
File parsing new features
~~~~~~~~~~~~~~~~~~~~~~~~~
The delimited file parsing engine (the guts of ``read_csv`` and ``read_table``)
has been rewritten from the ground up and now uses a fraction the amount of
memory while parsing, while being 40% or more faster in most use cases (in some
cases much faster).
There are also many new features:
- Much-improved Unicode handling via the ``encoding`` option.
- Column filtering (``usecols``)
- Dtype specification (``dtype`` argument)
- Ability to specify strings to be recognized as True/False
- Ability to yield NumPy record arrays (``as_recarray``)
- High performance ``delim_whitespace`` option
- Decimal format (e.g. European format) specification
- Easier CSV dialect options: ``escapechar``, ``lineterminator``,
``quotechar``, etc.
- More robust handling of many exceptional kinds of files observed in the wild
API changes
~~~~~~~~~~~
**Deprecated DataFrame BINOP TimeSeries special case behavior**
The default behavior of binary operations between a DataFrame and a Series has
always been to align on the DataFrame's columns and broadcast down the rows,
**except** in the special case that the DataFrame contains time series. Since
there are now method for each binary operator enabling you to specify how you
want to broadcast, we are phasing out this special case (Zen of Python:
*Special cases aren't special enough to break the rules*). Here's what I'm
talking about:
.. ipython:: python
import pandas as pd
df = pd.DataFrame(np.random.randn(6, 4),
index=pd.date_range('1/1/2000', periods=6))
df
# deprecated now
df - df[0]
# Change your code to
df.sub(df[0], axis=0) # align on axis 0 (rows)
You will get a deprecation warning in the 0.10.x series, and the deprecated
functionality will be removed in 0.11 or later.
**Altered resample default behavior**
The default time series ``resample`` binning behavior of daily ``D`` and
*higher* frequencies has been changed to ``closed='left', label='left'``. Lower
nfrequencies are unaffected. The prior defaults were causing a great deal of
confusion for users, especially resampling data to daily frequency (which
labeled the aggregated group with the end of the interval: the next day).
Note:
.. ipython:: python
dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
series = Series(np.arange(len(dates)), index=dates)
series
series.resample('D', how='sum')
# old behavior
series.resample('D', how='sum', closed='right', label='right')
- Infinity and negative infinity are no longer treated as NA by ``isnull`` and
``notnull``. That they every were was a relic of early pandas. This behavior
can be re-enabled globally by the ``mode.use_inf_as_null`` option:
.. ipython:: python
s = pd.Series([1.5, np.inf, 3.4, -np.inf])
pd.isnull(s)
s.fillna(0)
pd.set_option('use_inf_as_null', True)
pd.isnull(s)
s.fillna(0)
pd.reset_option('use_inf_as_null')
- Methods with the ``inplace`` option now all return ``None`` instead of the
calling object. E.g. code written like ``df = df.fillna(0, inplace=True)``
may stop working. To fix, simply delete the unnecessary variable assignment.
- ``pandas.merge`` no longer sorts the group keys (``sort=False``) by
default. This was done for performance reasons: the group-key sorting is
often one of the more expensive parts of the computation and is often
unnecessary.
- The default column names for a file with no header have been changed to the
integers ``0`` through ``N - 1``. This is to create consistency with the
DataFrame constructor with no columns specified. The v0.9.0 behavior (names
``X0``, ``X1``, ...) can be reproduced by specifying ``prefix='X'``:
.. ipython:: python
data= 'a,b,c\n1,Yes,2\n3,No,4'
print data
pd.read_csv(StringIO(data), header=None)
pd.read_csv(StringIO(data), header=None, prefix='X')
- Values like ``'Yes'`` and ``'No'`` are not interpreted as boolean by default,
though this can be controlled by new ``true_values`` and ``false_values``
arguments:
.. ipython:: python
print data
pd.read_csv(StringIO(data))
pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
- The file parsers will not recognize non-string values arising from a
converter function as NA if passed in the ``na_values`` argument. It's better
to do post-processing using the ``replace`` function instead.
- Calling ``fillna`` on Series or DataFrame with no arguments is no longer
valid code. You must either specify a fill value or an interpolation method:
.. ipython:: python
s = Series([np.nan, 1., 2., np.nan, 4])
s
s.fillna(0)
s.fillna(method='pad')
Convenience methods ``ffill`` and ``bfill`` have been added:
.. ipython:: python
s.ffill()
- ``Series.apply`` will now operate on a returned value from the applied
function, that is itself a series, and possibly upcast the result to a
DataFrame
.. ipython:: python
def f(x):
return Series([ x, x**2 ], index = ['x', 'x^2'])
s = Series(np.random.rand(5))
s
s.apply(f)
- New API functions for working with pandas options (GH2097_):
- ``get_option`` / ``set_option`` - get/set the value of an option. Partial
names are accepted. - ``reset_option`` - reset one or more options to
their default value. Partial names are accepted. - ``describe_option`` -
print a description of one or more options. When called with no
arguments. print all registered options.
Note: ``set_printoptions``/ ``reset_printoptions`` are now deprecated (but
functioning), the print options now live under "display.XYZ". For example:
.. ipython:: python
get_option("display.max_rows")
- to_string() methods now always return unicode strings (GH2224_).
New features
~~~~~~~~~~~~
Wide DataFrame Printing
~~~~~~~~~~~~~~~~~~~~~~~
Instead of printing the summary information, pandas now splits the string
representation across multiple rows by default:
.. ipython:: python
wide_frame = DataFrame(randn(5, 16))
wide_frame
The old behavior of printing out summary information can be achieved via the
'expand_frame_repr' print option:
.. ipython:: python
pd.set_option('expand_frame_repr', False)
wide_frame
.. ipython:: python
:suppress:
pd.reset_option('expand_frame_repr')
The width of each line can be changed via 'line_width' (80 by default):
.. ipython:: python
pd.set_option('line_width', 40)
wide_frame
.. ipython:: python
:suppress:
pd.reset_option('line_width')
Updated PyTables Support
~~~~~~~~~~~~~~~~~~~~~~~~
:ref:`Docs <io-hdf5>` for PyTables ``Table`` format & several enhancements to the api. Here is a taste of what to expect.
.. ipython:: python
:suppress:
:okexcept:
os.remove('store.h5')
.. ipython:: python
store = HDFStore('store.h5')
df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
columns=['A', 'B', 'C'])
df
# appending data frames
df1 = df[0:4]
df2 = df[4:]
store.append('df', df1)
store.append('df', df2)
store
# selecting the entire store
store.select('df')
.. ipython:: python
wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
major_axis=date_range('1/1/2000', periods=5),
minor_axis=['A', 'B', 'C', 'D'])
wp
# storing a panel
store.append('wp',wp)
# selecting via A QUERY
store.select('wp',
[ Term('major_axis>20000102'), Term('minor_axis', '=', ['A','B']) ])
# removing data from tables
store.remove('wp', [ 'major_axis', '>', wp.major_axis[3] ])
store.select('wp')
# deleting a store
del store['df']
store
**Enhancements**
- added ability to hierarchical keys
.. ipython:: python
store.put('foo/bar/bah', df)
store.append('food/orange', df)
store.append('food/apple', df)
store
# remove all nodes under this level
store.remove('food')
store
- added mixed-dtype support!
.. ipython:: python
df['string'] = 'string'
df['int'] = 1
store.append('df',df)
df1 = store.select('df')
df1
df1.get_dtype_counts()
- performance improvments on table writing
- support for arbitrarily indexed dimensions
- ``SparseSeries`` now has a ``density`` property (GH2384_)
- enable ``Series.str.strip/lstrip/rstrip`` methods to take an input argument
to strip arbitrary characters (GH2411_)
- implement ``value_vars`` in ``melt`` to limit values to certain columns
and add ``melt`` to pandas namespace (GH2412_)
**Bug Fixes**
- added ``Term`` method of specifying where conditions (GH1996_).
- ``del store['df']`` now call ``store.remove('df')`` for store deletion
- deleting of consecutive rows is much faster than before
- ``min_itemsize`` parameter can be specified in table creation to force a
minimum size for indexing columns (the previous implementation would set the
column size based on the first append)
- indexing support via ``create_table_index`` (requires PyTables >= 2.3)
(GH698_).
- appending on a store would fail if the table was not first created via ``put``
- fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- minor change to select and remove: require a table ONLY if where is also
provided (and not None)
.. ipython:: python
:suppress:
store.close()
import os
os.remove('store.h5')
**Compatibility**
0.10 of ``HDFStore`` is backwards compatible for reading tables created in a prior version of pandas,
however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire
file and write it out using the new format to take advantage of the updates.
N Dimensional Panels (Experimental)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Adding experimental support for Panel4D and factory functions to create n-dimensional named panels.
:ref:`Docs <dsintro.panel4d>` for NDim. Here is a taste of what to expect.
.. ipython:: python
p4d = Panel4D(randn(2, 2, 5, 4),
labels=['Label1','Label2'],
items=['Item1', 'Item2'],
major_axis=date_range('1/1/2000', periods=5),
minor_axis=['A', 'B', 'C', 'D'])
p4d
See the `full release notes
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
on GitHub for a complete list.
.. _GH698: https://github.com/pydata/pandas/issues/698
.. _GH1996: https://github.com/pydata/pandas/issues/1996
.. _GH2316: https://github.com/pydata/pandas/issues/2316
.. _GH2097: https://github.com/pydata/pandas/issues/2097
.. _GH2224: https://github.com/pydata/pandas/issues/2224
.. _GH2431: https://github.com/pydata/pandas/issues/2431
.. _GH2412: https://github.com/pydata/pandas/issues/2412
.. _GH2411: https://github.com/pydata/pandas/issues/2411
.. _GH2384: https://github.com/pydata/pandas/issues/2384