forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_categorical.py
440 lines (347 loc) · 16.6 KB
/
test_categorical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# -*- coding: utf-8 -*-
import pytest
import pandas as pd
import numpy as np
from pandas import (Series, DataFrame, Timestamp,
Categorical, CategoricalIndex)
from pandas.util.testing import assert_series_equal, assert_frame_equal
from pandas.util import testing as tm
from pandas.api.types import CategoricalDtype as CDT
class TestCategoricalIndex(object):
def setup_method(self, method):
self.df = DataFrame({'A': np.arange(6, dtype='int64'),
'B': Series(list('aabbca')).astype(
CDT(list('cab')))}).set_index('B')
self.df2 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': Series(list('aabbca')).astype(
CDT(list('cabe')))}).set_index('B')
self.df3 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': (Series([1, 1, 2, 1, 3, 2])
.astype(CDT([3, 2, 1], ordered=True)))
}).set_index('B')
self.df4 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': (Series([1, 1, 2, 1, 3, 2])
.astype(CDT([3, 2, 1], ordered=False)))
}).set_index('B')
def test_loc_scalar(self):
result = self.df.loc['a']
expected = (DataFrame({'A': [0, 1, 5],
'B': (Series(list('aaa'))
.astype(CDT(list('cab'))))})
.set_index('B'))
assert_frame_equal(result, expected)
df = self.df.copy()
df.loc['a'] = 20
expected = (DataFrame({'A': [20, 20, 2, 3, 4, 20],
'B': (Series(list('aabbca'))
.astype(CDT(list('cab'))))})
.set_index('B'))
assert_frame_equal(df, expected)
# value not in the categories
pytest.raises(KeyError, lambda: df.loc['d'])
def f():
df.loc['d'] = 10
pytest.raises(TypeError, f)
def f():
df.loc['d', 'A'] = 10
pytest.raises(TypeError, f)
def f():
df.loc['d', 'C'] = 10
pytest.raises(TypeError, f)
def test_getitem_scalar(self):
cats = Categorical([Timestamp('12-31-1999'),
Timestamp('12-31-2000')])
s = Series([1, 2], index=cats)
expected = s.iloc[0]
result = s[cats[0]]
assert result == expected
def test_loc_listlike(self):
# list of labels
result = self.df.loc[['c', 'a']]
expected = self.df.iloc[[4, 0, 1, 5]]
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index)
assert_frame_equal(result, expected, check_index_type=True)
# element in the categories but not in the values
pytest.raises(KeyError, lambda: self.df2.loc['e'])
# assign is ok
df = self.df2.copy()
df.loc['e'] = 20
result = df.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, 20]}, index=exp_index)
assert_frame_equal(result, expected)
df = self.df2.copy()
result = df.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index)
assert_frame_equal(result, expected, check_index_type=True)
# not all labels in the categories
pytest.raises(KeyError, lambda: self.df2.loc[['a', 'd']])
def test_loc_listlike_dtypes(self):
# GH 11586
# unique categories and codes
index = CategoricalIndex(['a', 'b', 'c'])
df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index)
# unique slice
res = df.loc[['a', 'b']]
exp_index = CategoricalIndex(['a', 'b'],
categories=index.categories)
exp = DataFrame({'A': [1, 2], 'B': [4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp_index = CategoricalIndex(['a', 'a', 'b'],
categories=index.categories)
exp = DataFrame({'A': [1, 1, 2], 'B': [4, 4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values that are '
'in the categories'):
df.loc[['a', 'x']]
# duplicated categories and codes
index = CategoricalIndex(['a', 'b', 'a'])
df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index)
# unique slice
res = df.loc[['a', 'b']]
exp = DataFrame({'A': [1, 3, 2],
'B': [4, 6, 5]},
index=CategoricalIndex(['a', 'a', 'b']))
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp = DataFrame(
{'A': [1, 3, 1, 3, 2],
'B': [4, 6, 4, 6, 5
]}, index=CategoricalIndex(['a', 'a', 'a', 'a', 'b']))
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values '
'that are in the categories'):
df.loc[['a', 'x']]
# contains unused category
index = CategoricalIndex(
['a', 'b', 'a', 'c'], categories=list('abcde'))
df = DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=index)
res = df.loc[['a', 'b']]
exp = DataFrame({'A': [1, 3, 2], 'B': [5, 7, 6]},
index=CategoricalIndex(['a', 'a', 'b'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
res = df.loc[['a', 'e']]
exp = DataFrame({'A': [1, 3, np.nan], 'B': [5, 7, np.nan]},
index=CategoricalIndex(['a', 'a', 'e'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp = DataFrame({'A': [1, 3, 1, 3, 2], 'B': [5, 7, 5, 7, 6]},
index=CategoricalIndex(['a', 'a', 'a', 'a', 'b'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values '
'that are in the categories'):
df.loc[['a', 'x']]
def test_get_indexer_array(self):
arr = np.array([Timestamp('1999-12-31 00:00:00'),
Timestamp('2000-12-31 00:00:00')], dtype=object)
cats = [Timestamp('1999-12-31 00:00:00'),
Timestamp('2000-12-31 00:00:00')]
ci = CategoricalIndex(cats,
categories=cats,
ordered=False, dtype='category')
result = ci.get_indexer(arr)
expected = np.array([0, 1], dtype='intp')
tm.assert_numpy_array_equal(result, expected)
def test_getitem_with_listlike(self):
# GH 16115
cats = Categorical([Timestamp('12-31-1999'),
Timestamp('12-31-2000')])
expected = DataFrame([[1, 0], [0, 1]], dtype='uint8',
index=[0, 1], columns=cats)
dummies = pd.get_dummies(cats)
result = dummies[[c for c in dummies.columns]]
assert_frame_equal(result, expected)
def test_ix_categorical_index(self):
# GH 12531
df = DataFrame(np.random.randn(3, 3),
index=list('ABC'), columns=list('XYZ'))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
expect = Series(df.loc['A', :], index=cdf.columns, name='A')
assert_series_equal(cdf.loc['A', :], expect)
expect = Series(df.loc[:, 'X'], index=cdf.index, name='X')
assert_series_equal(cdf.loc[:, 'X'], expect)
exp_index = CategoricalIndex(list('AB'), categories=['A', 'B', 'C'])
expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns,
index=exp_index)
assert_frame_equal(cdf.loc[['A', 'B'], :], expect)
exp_columns = CategoricalIndex(list('XY'),
categories=['X', 'Y', 'Z'])
expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index,
columns=exp_columns)
assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect)
# non-unique
df = DataFrame(np.random.randn(3, 3),
index=list('ABA'), columns=list('XYX'))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
exp_index = CategoricalIndex(list('AA'), categories=['A', 'B'])
expect = DataFrame(df.loc['A', :], columns=cdf.columns,
index=exp_index)
assert_frame_equal(cdf.loc['A', :], expect)
exp_columns = CategoricalIndex(list('XX'), categories=['X', 'Y'])
expect = DataFrame(df.loc[:, 'X'], index=cdf.index,
columns=exp_columns)
assert_frame_equal(cdf.loc[:, 'X'], expect)
expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns,
index=CategoricalIndex(list('AAB')))
assert_frame_equal(cdf.loc[['A', 'B'], :], expect)
expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index,
columns=CategoricalIndex(list('XXY')))
assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect)
def test_read_only_source(self):
# GH 10043
rw_array = np.eye(10)
rw_df = DataFrame(rw_array)
ro_array = np.eye(10)
ro_array.setflags(write=False)
ro_df = DataFrame(ro_array)
assert_frame_equal(rw_df.iloc[[1, 2, 3]], ro_df.iloc[[1, 2, 3]])
assert_frame_equal(rw_df.iloc[[1]], ro_df.iloc[[1]])
assert_series_equal(rw_df.iloc[1], ro_df.iloc[1])
assert_frame_equal(rw_df.iloc[1:3], ro_df.iloc[1:3])
assert_frame_equal(rw_df.loc[[1, 2, 3]], ro_df.loc[[1, 2, 3]])
assert_frame_equal(rw_df.loc[[1]], ro_df.loc[[1]])
assert_series_equal(rw_df.loc[1], ro_df.loc[1])
assert_frame_equal(rw_df.loc[1:3], ro_df.loc[1:3])
def test_reindexing(self):
# reindexing
# convert to a regular index
result = self.df2.reindex(['a', 'b', 'e'])
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan],
'B': Series(list('aaabbe'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b'])
expected = DataFrame({'A': [0, 1, 5, 2, 3],
'B': Series(list('aaabb'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['e'])
expected = DataFrame({'A': [np.nan],
'B': Series(['e'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['d'])
expected = DataFrame({'A': [np.nan],
'B': Series(['d'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# since we are actually reindexing with a Categorical
# then return a Categorical
cats = list('cabe')
result = self.df2.reindex(Categorical(['a', 'd'], categories=cats))
expected = DataFrame({'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(cats))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(Categorical(['a'], categories=cats))
expected = DataFrame({'A': [0, 1, 5],
'B': Series(list('aaa')).astype(
CDT(cats))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b', 'e'])
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan],
'B': Series(list('aaabbe'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b'])
expected = DataFrame({'A': [0, 1, 5, 2, 3],
'B': Series(list('aaabb'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['e'])
expected = DataFrame({'A': [np.nan],
'B': Series(['e'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# give back the type of categorical that we received
result = self.df2.reindex(Categorical(
['a', 'd'], categories=cats, ordered=True))
expected = DataFrame(
{'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(cats, ordered=True))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(Categorical(
['a', 'd'], categories=['a', 'd']))
expected = DataFrame({'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(['a', 'd']))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# passed duplicate indexers are not allowed
pytest.raises(ValueError, lambda: self.df2.reindex(['a', 'a']))
# args NotImplemented ATM
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], method='ffill'))
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], level=1))
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], limit=2))
def test_loc_slice(self):
# slicing
# not implemented ATM
# GH9748
pytest.raises(TypeError, lambda: self.df.loc[1:5])
# result = df.loc[1:5]
# expected = df.iloc[[1,2,3,4]]
# assert_frame_equal(result, expected)
def test_boolean_selection(self):
df3 = self.df3
df4 = self.df4
result = df3[df3.index == 'a']
expected = df3.iloc[[]]
assert_frame_equal(result, expected)
result = df4[df4.index == 'a']
expected = df4.iloc[[]]
assert_frame_equal(result, expected)
result = df3[df3.index == 1]
expected = df3.iloc[[0, 1, 3]]
assert_frame_equal(result, expected)
result = df4[df4.index == 1]
expected = df4.iloc[[0, 1, 3]]
assert_frame_equal(result, expected)
# since we have an ordered categorical
# CategoricalIndex([1, 1, 2, 1, 3, 2],
# categories=[3, 2, 1],
# ordered=True,
# name=u'B')
result = df3[df3.index < 2]
expected = df3.iloc[[4]]
assert_frame_equal(result, expected)
result = df3[df3.index > 1]
expected = df3.iloc[[]]
assert_frame_equal(result, expected)
# unordered
# cannot be compared
# CategoricalIndex([1, 1, 2, 1, 3, 2],
# categories=[3, 2, 1],
# ordered=False,
# name=u'B')
pytest.raises(TypeError, lambda: df4[df4.index < 2])
pytest.raises(TypeError, lambda: df4[df4.index > 1])
def test_indexing_with_category(self):
# https://github.com/pandas-dev/pandas/issues/12564
# consistent result if comparing as Dataframe
cat = DataFrame({'A': ['foo', 'bar', 'baz']})
exp = DataFrame({'A': [True, False, False]})
res = (cat[['A']] == 'foo')
tm.assert_frame_equal(res, exp)
cat['A'] = cat['A'].astype('category')
res = (cat[['A']] == 'foo')
tm.assert_frame_equal(res, exp)