forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathjoin_merge.py
383 lines (284 loc) · 13.3 KB
/
join_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from .pandas_vb_common import *
try:
from pandas import merge_ordered
except ImportError:
from pandas import ordered_merge as merge_ordered
# ----------------------------------------------------------------------
# Append
class Append(object):
goal_time = 0.2
def setup(self):
self.df1 = pd.DataFrame(np.random.randn(10000, 4),
columns=['A', 'B', 'C', 'D'])
self.df2 = self.df1.copy()
self.df2.index = np.arange(10000, 20000)
self.mdf1 = self.df1.copy()
self.mdf1['obj1'] = 'bar'
self.mdf1['obj2'] = 'bar'
self.mdf1['int1'] = 5
try:
self.mdf1.consolidate(inplace=True)
except:
pass
self.mdf2 = self.mdf1.copy()
self.mdf2.index = self.df2.index
def time_append_homogenous(self):
self.df1.append(self.df2)
def time_append_mixed(self):
self.mdf1.append(self.mdf2)
# ----------------------------------------------------------------------
# Concat
class Concat(object):
goal_time = 0.2
def setup(self):
self.n = 1000
self.indices = tm.makeStringIndex(1000)
self.s = Series(self.n, index=self.indices)
self.pieces = [self.s[i:(- i)] for i in range(1, 10)]
self.pieces = (self.pieces * 50)
self.df_small = pd.DataFrame(randn(5, 4))
# empty
self.df = pd.DataFrame(dict(A=range(10000)), index=date_range('20130101', periods=10000, freq='s'))
self.empty = pd.DataFrame()
def time_concat_series_axis1(self):
concat(self.pieces, axis=1)
def time_concat_small_frames(self):
concat(([self.df_small] * 1000))
def time_concat_empty_frames1(self):
concat([self.df, self.empty])
def time_concat_empty_frames2(self):
concat([self.empty, self.df])
class ConcatPanels(object):
goal_time = 0.2
def setup(self):
dataset = np.zeros((10000, 200, 2), dtype=np.float32)
self.panels_f = [pd.Panel(np.copy(dataset, order='F'))
for i in range(20)]
self.panels_c = [pd.Panel(np.copy(dataset, order='C'))
for i in range(20)]
def time_c_ordered_axis0(self):
concat(self.panels_c, axis=0, ignore_index=True)
def time_f_ordered_axis0(self):
concat(self.panels_f, axis=0, ignore_index=True)
def time_c_ordered_axis1(self):
concat(self.panels_c, axis=1, ignore_index=True)
def time_f_ordered_axis1(self):
concat(self.panels_f, axis=1, ignore_index=True)
def time_c_ordered_axis2(self):
concat(self.panels_c, axis=2, ignore_index=True)
def time_f_ordered_axis2(self):
concat(self.panels_f, axis=2, ignore_index=True)
class ConcatFrames(object):
goal_time = 0.2
def setup(self):
dataset = np.zeros((10000, 200), dtype=np.float32)
self.frames_f = [pd.DataFrame(np.copy(dataset, order='F'))
for i in range(20)]
self.frames_c = [pd.DataFrame(np.copy(dataset, order='C'))
for i in range(20)]
def time_c_ordered_axis0(self):
concat(self.frames_c, axis=0, ignore_index=True)
def time_f_ordered_axis0(self):
concat(self.frames_f, axis=0, ignore_index=True)
def time_c_ordered_axis1(self):
concat(self.frames_c, axis=1, ignore_index=True)
def time_f_ordered_axis1(self):
concat(self.frames_f, axis=1, ignore_index=True)
# ----------------------------------------------------------------------
# Joins
class Join(object):
goal_time = 0.2
def setup(self):
self.level1 = tm.makeStringIndex(10).values
self.level2 = tm.makeStringIndex(1000).values
self.label1 = np.arange(10).repeat(1000)
self.label2 = np.tile(np.arange(1000), 10)
self.key1 = np.tile(self.level1.take(self.label1), 10)
self.key2 = np.tile(self.level2.take(self.label2), 10)
self.shuf = np.arange(100000)
random.shuffle(self.shuf)
try:
self.index2 = MultiIndex(levels=[self.level1, self.level2],
labels=[self.label1, self.label2])
self.index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)],
labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
self.df_multi = DataFrame(np.random.randn(len(self.index2), 4),
index=self.index2,
columns=['A', 'B', 'C', 'D'])
except:
pass
self.df = pd.DataFrame({'data1': np.random.randn(100000),
'data2': np.random.randn(100000),
'key1': self.key1,
'key2': self.key2})
self.df_key1 = pd.DataFrame(np.random.randn(len(self.level1), 4),
index=self.level1,
columns=['A', 'B', 'C', 'D'])
self.df_key2 = pd.DataFrame(np.random.randn(len(self.level2), 4),
index=self.level2,
columns=['A', 'B', 'C', 'D'])
self.df_shuf = self.df.reindex(self.df.index[self.shuf])
def time_join_dataframe_index_multi(self):
self.df.join(self.df_multi, on=['key1', 'key2'])
def time_join_dataframe_index_single_key_bigger(self):
self.df.join(self.df_key2, on='key2')
def time_join_dataframe_index_single_key_bigger_sort(self):
self.df_shuf.join(self.df_key2, on='key2', sort=True)
def time_join_dataframe_index_single_key_small(self):
self.df.join(self.df_key1, on='key1')
class JoinIndex(object):
goal_time = 0.2
def setup(self):
np.random.seed(2718281)
self.n = 50000
self.left = pd.DataFrame(np.random.randint(1, (self.n / 500), (self.n, 2)), columns=['jim', 'joe'])
self.right = pd.DataFrame(np.random.randint(1, (self.n / 500), (self.n, 2)), columns=['jolie', 'jolia']).set_index('jolie')
def time_left_outer_join_index(self):
self.left.join(self.right, on='jim')
class join_non_unique_equal(object):
# outer join of non-unique
# GH 6329
goal_time = 0.2
def setup(self):
self.date_index = date_range('01-Jan-2013', '23-Jan-2013', freq='T')
self.daily_dates = self.date_index.to_period('D').to_timestamp('S', 'S')
self.fracofday = (self.date_index.view(np.ndarray) - self.daily_dates.view(np.ndarray))
self.fracofday = (self.fracofday.astype('timedelta64[ns]').astype(np.float64) / 86400000000000.0)
self.fracofday = Series(self.fracofday, self.daily_dates)
self.index = date_range(self.date_index.min().to_period('A').to_timestamp('D', 'S'), self.date_index.max().to_period('A').to_timestamp('D', 'E'), freq='D')
self.temp = Series(1.0, self.index)
def time_join_non_unique_equal(self):
(self.fracofday * self.temp[self.fracofday.index])
# ----------------------------------------------------------------------
# Merges
class Merge(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.indices = tm.makeStringIndex(self.N).values
self.indices2 = tm.makeStringIndex(self.N).values
self.key = np.tile(self.indices[:8000], 10)
self.key2 = np.tile(self.indices2[:8000], 10)
self.left = pd.DataFrame({'key': self.key, 'key2': self.key2,
'value': np.random.randn(80000)})
self.right = pd.DataFrame({'key': self.indices[2000:],
'key2': self.indices2[2000:],
'value2': np.random.randn(8000)})
self.df = pd.DataFrame({'key1': np.tile(np.arange(500).repeat(10), 2),
'key2': np.tile(np.arange(250).repeat(10), 4),
'value': np.random.randn(10000)})
self.df2 = pd.DataFrame({'key1': np.arange(500), 'value2': randn(500)})
self.df3 = self.df[:5000]
def time_merge_2intkey_nosort(self):
merge(self.left, self.right, sort=False)
def time_merge_2intkey_sort(self):
merge(self.left, self.right, sort=True)
def time_merge_dataframe_integer_2key(self):
merge(self.df, self.df3)
def time_merge_dataframe_integer_key(self):
merge(self.df, self.df2, on='key1')
class i8merge(object):
goal_time = 0.2
def setup(self):
(low, high, n) = (((-1) << 10), (1 << 10), (1 << 20))
self.left = pd.DataFrame(np.random.randint(low, high, (n, 7)),
columns=list('ABCDEFG'))
self.left['left'] = self.left.sum(axis=1)
self.i = np.random.permutation(len(self.left))
self.right = self.left.iloc[self.i].copy()
self.right.columns = (self.right.columns[:(-1)].tolist() + ['right'])
self.right.index = np.arange(len(self.right))
self.right['right'] *= (-1)
def time_i8merge(self):
merge(self.left, self.right, how='outer')
class MergeCategoricals(object):
goal_time = 0.2
def setup(self):
self.left_object = pd.DataFrame(
{'X': np.random.choice(range(0, 10), size=(10000,)),
'Y': np.random.choice(['one', 'two', 'three'], size=(10000,))})
self.right_object = pd.DataFrame(
{'X': np.random.choice(range(0, 10), size=(10000,)),
'Z': np.random.choice(['jjj', 'kkk', 'sss'], size=(10000,))})
self.left_cat = self.left_object.assign(
Y=self.left_object['Y'].astype('category'))
self.right_cat = self.right_object.assign(
Z=self.right_object['Z'].astype('category'))
def time_merge_object(self):
merge(self.left_object, self.right_object, on='X')
def time_merge_cat(self):
merge(self.left_cat, self.right_cat, on='X')
# ----------------------------------------------------------------------
# Ordered merge
class MergeOrdered(object):
def setup(self):
groups = tm.makeStringIndex(10).values
self.left = pd.DataFrame({'group': groups.repeat(5000),
'key' : np.tile(np.arange(0, 10000, 2), 10),
'lvalue': np.random.randn(50000)})
self.right = pd.DataFrame({'key' : np.arange(10000),
'rvalue' : np.random.randn(10000)})
def time_merge_ordered(self):
merge_ordered(self.left, self.right, on='key', left_by='group')
# ----------------------------------------------------------------------
# asof merge
class MergeAsof(object):
def setup(self):
import string
np.random.seed(0)
one_count = 200000
two_count = 1000000
self.df1 = pd.DataFrame(
{'time': np.random.randint(0, one_count / 20, one_count),
'key': np.random.choice(list(string.uppercase), one_count),
'key2': np.random.randint(0, 25, one_count),
'value1': np.random.randn(one_count)})
self.df2 = pd.DataFrame(
{'time': np.random.randint(0, two_count / 20, two_count),
'key': np.random.choice(list(string.uppercase), two_count),
'key2': np.random.randint(0, 25, two_count),
'value2': np.random.randn(two_count)})
self.df1 = self.df1.sort_values('time')
self.df2 = self.df2.sort_values('time')
self.df1['time32'] = np.int32(self.df1.time)
self.df2['time32'] = np.int32(self.df2.time)
self.df1a = self.df1[['time', 'value1']]
self.df2a = self.df2[['time', 'value2']]
self.df1b = self.df1[['time', 'key', 'value1']]
self.df2b = self.df2[['time', 'key', 'value2']]
self.df1c = self.df1[['time', 'key2', 'value1']]
self.df2c = self.df2[['time', 'key2', 'value2']]
self.df1d = self.df1[['time32', 'value1']]
self.df2d = self.df2[['time32', 'value2']]
self.df1e = self.df1[['time', 'key', 'key2', 'value1']]
self.df2e = self.df2[['time', 'key', 'key2', 'value2']]
def time_noby(self):
merge_asof(self.df1a, self.df2a, on='time')
def time_by_object(self):
merge_asof(self.df1b, self.df2b, on='time', by='key')
def time_by_int(self):
merge_asof(self.df1c, self.df2c, on='time', by='key2')
def time_on_int32(self):
merge_asof(self.df1d, self.df2d, on='time32')
def time_multiby(self):
merge_asof(self.df1e, self.df2e, on='time', by=['key', 'key2'])
# ----------------------------------------------------------------------
# data alignment
class Align(object):
goal_time = 0.2
def setup(self):
self.n = 1000000
self.sz = 500000
self.rng = np.arange(0, 10000000000000, 10000000)
self.stamps = (np.datetime64(datetime.now()).view('i8') + self.rng)
self.idx1 = np.sort(self.sample(self.stamps, self.sz))
self.idx2 = np.sort(self.sample(self.stamps, self.sz))
self.ts1 = Series(np.random.randn(self.sz), self.idx1)
self.ts2 = Series(np.random.randn(self.sz), self.idx2)
def sample(self, values, k):
self.sampler = np.random.permutation(len(values))
return values.take(self.sampler[:k])
def time_series_align_int64_index(self):
(self.ts1 + self.ts2)
def time_series_align_left_monotonic(self):
self.ts1.align(self.ts2, join='left')