forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathalgorithms.py
340 lines (263 loc) · 8.96 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""
Generic data algorithms. This module is experimental at the moment and not
intended for public consumption
"""
import numpy as np
import pandas.core.common as com
import pandas.algos as algos
import pandas.hashtable as htable
def match(to_match, values, na_sentinel=-1):
"""
Compute locations of to_match into values
Parameters
----------
to_match : array-like
values to find positions of
values : array-like
Unique set of values
na_sentinel : int, default -1
Value to mark "not found"
Examples
--------
Returns
-------
match : ndarray of integers
"""
values = com._asarray_tuplesafe(values)
if issubclass(values.dtype.type, basestring):
values = np.array(values, dtype='O')
f = lambda htype, caster: _match_generic(to_match, values, htype, caster)
return _hashtable_algo(f, values.dtype)
def unique(values):
"""
Compute unique values (not necessarily sorted) efficiently from input array
of values
Parameters
----------
values : array-like
Returns
-------
uniques
"""
values = com._asarray_tuplesafe(values)
f = lambda htype, caster: _unique_generic(values, htype, caster)
return _hashtable_algo(f, values.dtype)
# def count(values, uniques=None):
# f = lambda htype, caster: _count_generic(values, htype, caster)
# if uniques is not None:
# raise NotImplementedError
# else:
# return _hashtable_algo(f, values.dtype)
def _hashtable_algo(f, dtype):
"""
f(HashTable, type_caster) -> result
"""
if com.is_float_dtype(dtype):
return f(htable.Float64HashTable, com._ensure_float64)
elif com.is_integer_dtype(dtype):
return f(htable.Int64HashTable, com._ensure_int64)
else:
return f(htable.PyObjectHashTable, com._ensure_object)
def _count_generic(values, table_type, type_caster):
from pandas.core.series import Series
values = type_caster(values)
table = table_type(min(len(values), 1000000))
uniques, labels = table.factorize(values)
return Series(counts, index=uniques)
def _match_generic(values, index, table_type, type_caster):
values = type_caster(values)
index = type_caster(index)
table = table_type(min(len(index), 1000000))
table.map_locations(index)
return table.lookup(values)
def _unique_generic(values, table_type, type_caster):
values = type_caster(values)
table = table_type(min(len(values), 1000000))
uniques = table.unique(values)
return type_caster(uniques)
def factorize(values, sort=False, order=None, na_sentinel=-1):
"""
Encode input values as an enumerated type or categorical variable
Parameters
----------
values : sequence
sort :
order :
Returns
-------
"""
from pandas.tseries.period import PeriodIndex
vals = np.asarray(values)
is_datetime = com.is_datetime64_dtype(vals)
(hash_klass, vec_klass), vals = _get_data_algo(vals, _hashtables)
table = hash_klass(len(vals))
uniques = vec_klass()
labels = table.get_labels(vals, uniques, 0, na_sentinel)
labels = com._ensure_platform_int(labels)
uniques = uniques.to_array()
if sort and len(uniques) > 0:
sorter = uniques.argsort()
reverse_indexer = np.empty(len(sorter), dtype=np.int_)
reverse_indexer.put(sorter, np.arange(len(sorter)))
mask = labels < 0
labels = reverse_indexer.take(labels)
np.putmask(labels, mask, -1)
uniques = uniques.take(sorter)
if is_datetime:
uniques = uniques.view('M8[ns]')
if isinstance(values, PeriodIndex):
uniques = PeriodIndex(ordinal=uniques, freq=values.freq)
return labels, uniques
def value_counts(values, sort=True, ascending=False):
"""
Compute a histogram of the counts of non-null values
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
Returns
-------
value_counts : Series
"""
from pandas.core.series import Series
values = np.asarray(values)
if com.is_integer_dtype(values.dtype):
values = com._ensure_int64(values)
keys, counts = htable.value_count_int64(values)
elif issubclass(values.dtype.type, (np.datetime64,np.timedelta64)):
dtype = values.dtype
values = values.view(np.int64)
keys, counts = htable.value_count_int64(values)
# convert the keys back to the dtype we came in
keys = Series(keys,dtype=dtype)
else:
mask = com.isnull(values)
values = com._ensure_object(values)
keys, counts = htable.value_count_object(values, mask)
result = Series(counts, index=keys)
if sort:
result.sort()
if not ascending:
result = result[::-1]
return result
def rank(values, axis=0, method='average', na_option='keep',
ascending=True):
"""
"""
if values.ndim == 1:
f, values = _get_data_algo(values, _rank1d_functions)
ranks = f(values, ties_method=method, ascending=ascending,
na_option=na_option)
elif values.ndim == 2:
f, values = _get_data_algo(values, _rank2d_functions)
ranks = f(values, axis=axis, ties_method=method,
ascending=ascending, na_option=na_option)
return ranks
def quantile(x, q, interpolation_method='fraction'):
"""
Compute sample quantile or quantiles of the input array. For example, q=0.5
computes the median.
The `interpolation_method` parameter supports three values, namely
`fraction` (default), `lower` and `higher`. Interpolation is done only,
if the desired quantile lies between two data points `i` and `j`. For
`fraction`, the result is an interpolated value between `i` and `j`;
for `lower`, the result is `i`, for `higher` the result is `j`.
Parameters
----------
x : ndarray
Values from which to extract score.
q : scalar or array
Percentile at which to extract score.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
- fraction: `i + (j - i)*fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
-lower: `i`.
- higher: `j`.
Returns
-------
score : float
Score at percentile.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
x = np.asarray(x)
mask = com.isnull(x)
x = x[-mask]
values = np.sort(x)
def _get_score(at):
if len(values) == 0:
return np.nan
idx = at * (len(values) - 1)
if (idx % 1 == 0):
score = values[idx]
else:
if interpolation_method == 'fraction':
score = _interpolate(values[int(idx)], values[int(idx) + 1],
idx % 1)
elif interpolation_method == 'lower':
score = values[np.floor(idx)]
elif interpolation_method == 'higher':
score = values[np.ceil(idx)]
else:
raise ValueError("interpolation_method can only be 'fraction' "
", 'lower' or 'higher'")
return score
if np.isscalar(q):
return _get_score(q)
else:
q = np.asarray(q, np.float64)
return algos.arrmap_float64(q, _get_score)
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a) * fraction
def _get_data_algo(values, func_map):
if com.is_float_dtype(values):
f = func_map['float64']
values = com._ensure_float64(values)
elif com.is_datetime64_dtype(values):
f = func_map['int64']
values = values.view('i8')
elif com.is_integer_dtype(values):
f = func_map['int64']
values = com._ensure_int64(values)
else:
f = func_map['generic']
values = com._ensure_object(values)
return f, values
def group_position(*args):
"""
Get group position
"""
from collections import defaultdict
table = defaultdict(int)
result = []
for tup in zip(*args):
result.append(table[tup])
table[tup] += 1
return result
_rank1d_functions = {
'float64': algos.rank_1d_float64,
'int64': algos.rank_1d_int64,
'generic': algos.rank_1d_generic
}
_rank2d_functions = {
'float64': algos.rank_2d_float64,
'int64': algos.rank_2d_int64,
'generic': algos.rank_2d_generic
}
_hashtables = {
'float64': (htable.Float64HashTable, htable.Float64Vector),
'int64': (htable.Int64HashTable, htable.Int64Vector),
'generic': (htable.PyObjectHashTable, htable.ObjectVector)
}