forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathv0.11.0.txt
352 lines (245 loc) · 12.2 KB
/
v0.11.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
.. _whatsnew_0110:
v0.11.0 (March ??, 2013)
------------------------
This is a major release from 0.10.1 and includes many new features and
enhancements along with a large number of bug fixes. The methods of Selecting
Data have had quite a number of additions, and Dtype support is now full-fledged.
There are also a number of important API changes that long-time pandas users should
pay close attention to.
There is a new section in the documentation, :ref:`10 Minutes to Pandas <10min>`,
primarily geared to new users.
There is a new section in the documentation, :ref:`Cookbook <cookbook>`, a collection
of useful recipes in pandas (and that we want contributions!).
There are several libraries that are now :ref:`Recommended Dependencies <install.recommended_dependencies>`
Selection Choices
~~~~~~~~~~~~~~~~~
Starting in 0.11.0, object selection has had a number of user-requested additions in
order to support more explicit location based indexing. Pandas now supports
three types of multi-axis indexing.
- ``.loc`` is strictly label based, will raise ``KeyError`` when the items are not found,
allowed inputs are:
- A single label, e.g. ``5`` or ``'a'``
(note that ``5`` is interpreted as a *label* of the index. This use is **not** an integer position along the index)
- A list or array of labels ``['a', 'b', 'c']``
- A slice object with labels ``'a':'f'``
(note that contrary to usual python slices, **both** the start and the stop are included!)
- A boolean array
See more at :ref:`Selection by Label <indexing.label>`
- ``.iloc`` is strictly integer position based (from 0 to length-1 of the axis), will
raise ``IndexError`` when the requested indicies are out of bounds. Allowed inputs are:
- An integer e.g. ``5``
- A list or array of integers ``[4, 3, 0]``
- A slice object with ints ``1:7``
- A boolean array
See more at :ref:`Selection by Position <indexing.integer>`
- ``.ix`` supports mixed integer and label based access. It is primarily label based, but
will fallback to integer positional access. ``.ix`` is the most general and will support
any of the inputs to ``.loc`` and ``.iloc``, as well as support for floating point label schemes.
As using integer slices with ``.ix`` have different behavior depending on whether the slice
is interpreted as integer location based or label position based, it's usually better to be
explicit and use ``.iloc`` (integer location) or ``.loc`` (label location).
``.ix`` is especially usefull when dealing with mixed positional/label based hierarchial indexes.
See more at :ref:`Advanced Indexing <indexing.advanced>` and :ref:`Advanced Hierarchical <indexing.advanced_hierarchical>`
Selection Deprecations
~~~~~~~~~~~~~~~~~~~~~~
Starting in version 0.11.0, these methods may be deprecated in future versions.
- ``irow``
- ``icol``
- ``iget_value``
See the section :ref:`Selection by Position <indexing.integer>` for substitutes.
Cross-sectional slices on non-hierarchical indices are now easily performed using
``.loc`` and/or ``.loc``. The methods:
- ``xs`` (for DataFrame),
- ``minor_xs`` and ``major_xs`` (for Panel)
now exist primarily for backward compatibility.
See the section :ref:`Selection by Label <indexing.label>` for substitutes.
Dtypes
~~~~~~
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the ``dtype`` keyword, a passed ``ndarray``, or a passed ``Series``, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste.
.. ipython:: python
df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
df1
df1.dtypes
df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
B = Series(randn(8)),
C = Series(randn(8),dtype='uint8') ))
df2
df2.dtypes
# here you get some upcasting
df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
df3
df3.dtypes
Dtype Conversion
~~~~~~~~~~~~~~~~
This is lower-common-denomicator upcasting, meaning you get the dtype which can accomodate all of the types
.. ipython:: python
df3.values.dtype
Conversion
.. ipython:: python
df3.astype('float32').dtypes
Mixed Conversion
.. ipython:: python
df3['D'] = '1.'
df3['E'] = '1'
df3.convert_objects(convert_numeric=True).dtypes
# same, but specific dtype conversion
df3['D'] = df3['D'].astype('float16')
df3['E'] = df3['E'].astype('int32')
df3.dtypes
Forcing Date coercion (and setting ``NaT`` when not datelike)
.. ipython:: python
s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
Timestamp('20010104'), '20010105'],dtype='O')
s.convert_objects(convert_dates='coerce')
Dtype Gotchas
~~~~~~~~~~~~~
**Platform Gotchas**
Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of ``int64`` and ``float64``,
*regardless of platform*. This is not an apparent change from earlier versions of pandas. If you specify
dtypes, they *WILL* be respected, however (GH2837_)
The following will all result in ``int64`` dtypes
.. ipython:: python
DataFrame([1,2],columns=['a']).dtypes
DataFrame({'a' : [1,2] }).dtypes
DataFrame({'a' : 1 }, index=range(2)).dtypes
Keep in mind that ``DataFrame(np.array([1,2]))`` **WILL** result in ``int32`` on 32-bit platforms!
**Upcasting Gotchas**
Performing indexing operations on integer type data can easily upcast the data.
The dtype of the input data will be preserved in cases where ``nans`` are not introduced.
.. ipython:: python
dfi = df3.astype('int32')
dfi['D'] = dfi['D'].astype('int64')
dfi
dfi.dtypes
casted = dfi[dfi>0]
casted
casted.dtypes
While float dtypes are unchanged.
.. ipython:: python
df4 = df3.copy()
df4['A'] = df4['A'].astype('float32')
df4.dtypes
casted = df4[df4>0]
casted
casted.dtypes
Datetimes Conversion
~~~~~~~~~~~~~~~~~~~~
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value,
in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way.
Furthermore ``datetime64[ns]`` columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
(GH2809_, GH2810_)
.. ipython:: python
df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])
df['timestamp'] = Timestamp('20010103')
df
# datetime64[ns] out of the box
df.get_dtype_counts()
# use the traditional nan, which is mapped to NaT internally
df.ix[2:4,['A','timestamp']] = np.nan
df
Astype conversion on ``datetime64[ns]`` to ``object``, implicity converts ``NaT`` to ``np.nan``
.. ipython:: python
import datetime
s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])
s.dtype
s[1] = np.nan
s
s.dtype
s = s.astype('O')
s
s.dtype
API changes
~~~~~~~~~~~
- In ``HDFStore``, added the method ``select_column`` to select a single column from a table as a Series.
- In ``HDFStore``, deprecated the ``unique`` method, can be replicated by ``select_column(key,column).unique()``
Enhancements
~~~~~~~~~~~~
- Improved performance of df.to_csv() by up to 10x in some cases. (GH3059_)
- Numexpr is now a :ref:`Recommended Dependencies <install.recommended_dependencies>`, to accelerate certain
types of numerical and boolean operations
- Bottleneck is now a :ref:`Recommended Dependencies <install.recommended_dependencies>`, to accelerate certain
types of ``nan`` operations
- For ``HDFStore``, support ``read_hdf/to_hdf`` API similar to ``read_csv/to_csv``
.. ipython:: python
df = DataFrame(dict(A=range(5), B=range(5)))
df.to_hdf('store.h5','table',append=True)
read_hdf('store.h5', 'table', where = ['index>2'])
.. ipython:: python
:suppress:
:okexcept:
os.remove('store.h5')
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores
(e.g. ``store.df == store['df']``)
- In ``HDFStore``, new keywords ``iterator=boolean``, and ``chunksize=number_in_a_chunk`` are
provided to support iteration on ``select`` and ``select_as_multiple`` (GH3076_)
- You can now select timestamps from an *unordered* timeseries similarly to an *ordered* timeseries (GH2437_)
- You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070_)
.. ipython:: python
idx = date_range("2001-10-1", periods=5, freq='M')
ts = Series(np.random.rand(len(idx)),index=idx)
ts['2001']
df = DataFrame(dict(A = ts))
df['2001']
- ``Squeeze`` to possibly remove length 1 dimensions from an object.
.. ipython:: python
p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
major_axis=date_range('20010102',periods=4),
minor_axis=['A','B','C','D'])
p
p.reindex(items=['ItemA']).squeeze()
p.reindex(items=['ItemA'],minor=['B']).squeeze()
- In ``pd.io.data.Options``,
+ Fix bug when trying to fetch data for the current month when already
past expiry.
+ Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
+ New instance variables for calls and puts are automatically created
when a method that creates them is called. This works for current month
where the instance variables are simply ``calls`` and ``puts``. Also
works for future expiry months and save the instance variable as
``callsMMYY`` or ``putsMMYY``, where ``MMYY`` are, respectively, the
month and year of the option's expiry.
+ ``Options.get_near_stock_price`` now allows the user to specify the
month for which to get relevant options data.
+ ``Options.get_forward_data`` now has optional kwargs ``near`` and
``above_below``. This allows the user to specify if they would like to
only return forward looking data for options near the current stock
price. This just obtains the data from Options.get_near_stock_price
instead of Options.get_xxx_data(). (GH2758_)
- added option `display.max_seq_items` to control the number of
elements printed per sequence pprinting it. (GH2979_)
- added option `display.chop_threshold` to control display of small numerical
values. (GH2739_)
- added option `display.max_info_rows` to prevent verbose_info from being
calculated for frames above 1M rows (configurable). (GH2807_, GH2918_)
- value_counts() now accepts a "normalize" argument, for normalized
histograms. (GH2710_).
- DataFrame.from_records now accepts not only dicts but any instance of
the collections.Mapping ABC.
- added option `display.with_wmp_style` providing a sleeker visual style
for plots. Based on https://gist.github.com/huyng/816622 (GH3075_).
- Treat boolean values as integers (values 1 and 0) for numeric
operations. (GH2641_)
See the `full release notes
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
on GitHub for a complete list.
.. _GH2437: https://github.com/pydata/pandas/issues/2437
.. _GH2809: https://github.com/pydata/pandas/issues/2809
.. _GH2810: https://github.com/pydata/pandas/issues/2810
.. _GH2837: https://github.com/pydata/pandas/issues/2837
.. _GH2898: https://github.com/pydata/pandas/issues/2898
.. _GH3035: https://github.com/pydata/pandas/issues/3035
.. _GH2978: https://github.com/pydata/pandas/issues/2978
.. _GH2877: https://github.com/pydata/pandas/issues/2877
.. _GH2739: https://github.com/pydata/pandas/issues/2739
.. _GH2710: https://github.com/pydata/pandas/issues/2710
.. _GH2806: https://github.com/pydata/pandas/issues/2806
.. _GH2807: https://github.com/pydata/pandas/issues/2807
.. _GH2918: https://github.com/pydata/pandas/issues/2918
.. _GH2758: https://github.com/pydata/pandas/issues/2758
.. _GH2979: https://github.com/pydata/pandas/issues/2979
.. _GH3011: https://github.com/pydata/pandas/issues/3011
.. _GH3076: https://github.com/pydata/pandas/issues/3076
.. _GH3059: https://github.com/pydata/pandas/issues/3059
.. _GH3070: https://github.com/pydata/pandas/issues/3070
.. _GH3075: https://github.com/pydata/pandas/issues/3075
.. _GH2641: https://github.com/pydata/pandas/issues/2641