forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval.py
242 lines (198 loc) · 8.15 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python
"""Top level ``eval`` module.
"""
import tokenize
from pandas.core import common as com
from pandas.computation.expr import Expr, _parsers, tokenize_string
from pandas.computation.scope import _ensure_scope
from pandas.compat import DeepChainMap, builtins
from pandas.computation.engines import _engines
from distutils.version import LooseVersion
def _check_engine(engine):
"""Make sure a valid engine is passed.
Parameters
----------
engine : str
Raises
------
KeyError
* If an invalid engine is passed
ImportError
* If numexpr was requested but doesn't exist
"""
if engine not in _engines:
raise KeyError('Invalid engine {0!r} passed, valid engines are'
' {1}'.format(engine, list(_engines.keys())))
# TODO: validate this in a more general way (thinking of future engines
# that won't necessarily be import-able)
# Could potentially be done on engine instantiation
if engine == 'numexpr':
try:
import numexpr
except ImportError:
raise ImportError("'numexpr' not found. Cannot use "
"engine='numexpr' for query/eval "
"if 'numexpr' is not installed")
else:
ne_version = numexpr.__version__
if ne_version < LooseVersion('2.1'):
raise ImportError("'numexpr' version is %s, "
"must be >= 2.1" % ne_version)
def _check_parser(parser):
"""Make sure a valid parser is passed.
Parameters
----------
parser : str
Raises
------
KeyError
* If an invalid parser is passed
"""
if parser not in _parsers:
raise KeyError('Invalid parser {0!r} passed, valid parsers are'
' {1}'.format(parser, _parsers.keys()))
def _check_resolvers(resolvers):
if resolvers is not None:
for resolver in resolvers:
if not hasattr(resolver, '__getitem__'):
name = type(resolver).__name__
raise TypeError('Resolver of type %r does not implement '
'the __getitem__ method' % name)
def _check_expression(expr):
"""Make sure an expression is not an empty string
Parameters
----------
expr : object
An object that can be converted to a string
Raises
------
ValueError
* If expr is an empty string
"""
if not expr:
raise ValueError("expr cannot be an empty string")
def _convert_expression(expr):
"""Convert an object to an expression.
Thus function converts an object to an expression (a unicode string) and
checks to make sure it isn't empty after conversion. This is used to
convert operators to their string representation for recursive calls to
:func:`~pandas.eval`.
Parameters
----------
expr : object
The object to be converted to a string.
Returns
-------
s : unicode
The string representation of an object.
Raises
------
ValueError
* If the expression is empty.
"""
s = com.pprint_thing(expr)
_check_expression(s)
return s
def _check_for_locals(expr, stack_level, parser):
at_top_of_stack = stack_level == 0
not_pandas_parser = parser != 'pandas'
if not_pandas_parser:
msg = "The '@' prefix is only supported by the pandas parser"
elif at_top_of_stack:
msg = ("The '@' prefix is not allowed in "
"top-level eval calls, \nplease refer to "
"your variables by name without the '@' "
"prefix")
if at_top_of_stack or not_pandas_parser:
for toknum, tokval in tokenize_string(expr):
if toknum == tokenize.OP and tokval == '@':
raise SyntaxError(msg)
def eval(expr, parser='pandas', engine='numexpr', truediv=True,
local_dict=None, global_dict=None, resolvers=(), level=0,
target=None):
"""Evaluate a Python expression as a string using various backends.
The following arithmetic operations are supported: ``+``, ``-``, ``*``,
``/``, ``**``, ``%``, ``//`` (python engine only) along with the following
boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not).
Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`,
:keyword:`or`, and :keyword:`not` with the same semantics as the
corresponding bitwise operators. :class:`~pandas.Series` and
:class:`~pandas.DataFrame` objects are supported and behave as they would
with plain ol' Python evaluation.
Parameters
----------
expr : str or unicode
The expression to evaluate. This string cannot contain any Python
`statements
<http://docs.python.org/2/reference/simple_stmts.html#simple-statements>`__,
only Python `expressions
<http://docs.python.org/2/reference/simple_stmts.html#expression-statements>`__.
parser : string, default 'pandas', {'pandas', 'python'}
The parser to use to construct the syntax tree from the expression. The
default of ``'pandas'`` parses code slightly different than standard
Python. Alternatively, you can parse an expression using the
``'python'`` parser to retain strict Python semantics. See the
:ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
engine : string, default 'numexpr', {'python', 'numexpr'}
The engine used to evaluate the expression. Supported engines are
- ``'numexpr'``: This default engine evaluates pandas objects using
numexpr for large speed ups in complex expressions
with large frames.
- ``'python'``: Performs operations as if you had ``eval``'d in top
level python. This engine is generally not that useful.
More backends may be available in the future.
truediv : bool, optional
Whether to use true division, like in Python >= 3
local_dict : dict or None, optional
A dictionary of local variables, taken from locals() by default.
global_dict : dict or None, optional
A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional
A list of objects implementing the ``__getitem__`` special method that
you can use to inject an additional collection of namespaces to use for
variable lookup. For example, this is used in the
:meth:`~pandas.DataFrame.query` method to inject the
:attr:`~pandas.DataFrame.index` and :attr:`~pandas.DataFrame.columns`
variables that refer to their respective :class:`~pandas.DataFrame`
instance attributes.
level : int, optional
The number of prior stack frames to traverse and add to the current
scope. Most users will **not** need to change this parameter.
target : a target object for assignment, optional, default is None
essentially this is a passed in resolver
Returns
-------
ndarray, numeric scalar, DataFrame, Series
Notes
-----
The ``dtype`` of any objects involved in an arithmetic ``%`` operation are
recursively cast to ``float64``.
See the :ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
See Also
--------
pandas.DataFrame.query
pandas.DataFrame.eval
"""
expr = _convert_expression(expr)
_check_engine(engine)
_check_parser(parser)
_check_resolvers(resolvers)
_check_for_locals(expr, level, parser)
# get our (possibly passed-in) scope
level += 1
env = _ensure_scope(level, global_dict=global_dict,
local_dict=local_dict, resolvers=resolvers,
target=target)
parsed_expr = Expr(expr, engine=engine, parser=parser, env=env,
truediv=truediv)
# construct the engine and evaluate the parsed expression
eng = _engines[engine]
eng_inst = eng(parsed_expr)
ret = eng_inst.evaluate()
# assign if needed
if env.target is not None and parsed_expr.assigner is not None:
env.target[parsed_expr.assigner] = ret
return None
return ret