forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_multi.py
2226 lines (1785 loc) · 86.5 KB
/
test_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from datetime import timedelta
from itertools import product
import nose
import re
import warnings
from pandas import (date_range, MultiIndex, Index, CategoricalIndex,
compat)
from pandas.core.common import PerformanceWarning
from pandas.indexes.base import InvalidIndexError
from pandas.compat import range, lrange, u, PY3, long, lzip
import numpy as np
from pandas.util.testing import (assert_almost_equal, assertRaises,
assertRaisesRegexp, assert_copy)
import pandas.util.testing as tm
import pandas as pd
from pandas.lib import Timestamp
from .common import Base
class TestMultiIndex(Base, tm.TestCase):
_holder = MultiIndex
_multiprocess_can_split_ = True
_compat_props = ['shape', 'ndim', 'size', 'itemsize']
def setUp(self):
major_axis = Index(['foo', 'bar', 'baz', 'qux'])
minor_axis = Index(['one', 'two'])
major_labels = np.array([0, 0, 1, 2, 3, 3])
minor_labels = np.array([0, 1, 0, 1, 0, 1])
self.index_names = ['first', 'second']
self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels
], names=self.index_names,
verify_integrity=False))
self.setup_indices()
def create_index(self):
return self.index
def test_boolean_context_compat2(self):
# boolean context compat
# GH7897
i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)])
i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)])
common = i1.intersection(i2)
def f():
if common:
pass
tm.assertRaisesRegexp(ValueError, 'The truth value of a', f)
def test_labels_dtypes(self):
# GH 8456
i = MultiIndex.from_tuples([('A', 1), ('A', 2)])
self.assertTrue(i.labels[0].dtype == 'int8')
self.assertTrue(i.labels[1].dtype == 'int8')
i = MultiIndex.from_product([['a'], range(40)])
self.assertTrue(i.labels[1].dtype == 'int8')
i = MultiIndex.from_product([['a'], range(400)])
self.assertTrue(i.labels[1].dtype == 'int16')
i = MultiIndex.from_product([['a'], range(40000)])
self.assertTrue(i.labels[1].dtype == 'int32')
i = pd.MultiIndex.from_product([['a'], range(1000)])
self.assertTrue((i.labels[0] >= 0).all())
self.assertTrue((i.labels[1] >= 0).all())
def test_where(self):
i = MultiIndex.from_tuples([('A', 1), ('A', 2)])
def f():
i.where(True)
self.assertRaises(NotImplementedError, f)
def test_repeat(self):
reps = 2
numbers = [1, 2, 3]
names = np.array(['foo', 'bar'])
m = MultiIndex.from_product([
numbers, names], names=names)
expected = MultiIndex.from_product([
numbers, names.repeat(reps)], names=names)
tm.assert_index_equal(m.repeat(reps), expected)
def test_numpy_repeat(self):
reps = 2
numbers = [1, 2, 3]
names = np.array(['foo', 'bar'])
m = MultiIndex.from_product([
numbers, names], names=names)
expected = MultiIndex.from_product([
numbers, names.repeat(reps)], names=names)
tm.assert_index_equal(np.repeat(m, reps), expected)
msg = "the 'axis' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.repeat, m, reps, axis=1)
def test_set_name_methods(self):
# so long as these are synonyms, we don't need to test set_names
self.assertEqual(self.index.rename, self.index.set_names)
new_names = [name + "SUFFIX" for name in self.index_names]
ind = self.index.set_names(new_names)
self.assertEqual(self.index.names, self.index_names)
self.assertEqual(ind.names, new_names)
with assertRaisesRegexp(ValueError, "^Length"):
ind.set_names(new_names + new_names)
new_names2 = [name + "SUFFIX2" for name in new_names]
res = ind.set_names(new_names2, inplace=True)
self.assertIsNone(res)
self.assertEqual(ind.names, new_names2)
# set names for specific level (# GH7792)
ind = self.index.set_names(new_names[0], level=0)
self.assertEqual(self.index.names, self.index_names)
self.assertEqual(ind.names, [new_names[0], self.index_names[1]])
res = ind.set_names(new_names2[0], level=0, inplace=True)
self.assertIsNone(res)
self.assertEqual(ind.names, [new_names2[0], self.index_names[1]])
# set names for multiple levels
ind = self.index.set_names(new_names, level=[0, 1])
self.assertEqual(self.index.names, self.index_names)
self.assertEqual(ind.names, new_names)
res = ind.set_names(new_names2, level=[0, 1], inplace=True)
self.assertIsNone(res)
self.assertEqual(ind.names, new_names2)
def test_set_levels(self):
# side note - you probably wouldn't want to use levels and labels
# directly like this - but it is possible.
levels = self.index.levels
new_levels = [[lev + 'a' for lev in level] for level in levels]
def assert_matching(actual, expected):
# avoid specifying internal representation
# as much as possible
self.assertEqual(len(actual), len(expected))
for act, exp in zip(actual, expected):
act = np.asarray(act)
exp = np.asarray(exp, dtype=np.object_)
tm.assert_numpy_array_equal(act, exp)
# level changing [w/o mutation]
ind2 = self.index.set_levels(new_levels)
assert_matching(ind2.levels, new_levels)
assert_matching(self.index.levels, levels)
# level changing [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_levels(new_levels, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.levels, new_levels)
# level changing specific level [w/o mutation]
ind2 = self.index.set_levels(new_levels[0], level=0)
assert_matching(ind2.levels, [new_levels[0], levels[1]])
assert_matching(self.index.levels, levels)
ind2 = self.index.set_levels(new_levels[1], level=1)
assert_matching(ind2.levels, [levels[0], new_levels[1]])
assert_matching(self.index.levels, levels)
# level changing multiple levels [w/o mutation]
ind2 = self.index.set_levels(new_levels, level=[0, 1])
assert_matching(ind2.levels, new_levels)
assert_matching(self.index.levels, levels)
# level changing specific level [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.levels, [new_levels[0], levels[1]])
assert_matching(self.index.levels, levels)
ind2 = self.index.copy()
inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.levels, [levels[0], new_levels[1]])
assert_matching(self.index.levels, levels)
# level changing multiple levels [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_levels(new_levels, level=[0, 1],
inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.levels, new_levels)
assert_matching(self.index.levels, levels)
def test_set_labels(self):
# side note - you probably wouldn't want to use levels and labels
# directly like this - but it is possible.
labels = self.index.labels
major_labels, minor_labels = labels
major_labels = [(x + 1) % 3 for x in major_labels]
minor_labels = [(x + 1) % 1 for x in minor_labels]
new_labels = [major_labels, minor_labels]
def assert_matching(actual, expected):
# avoid specifying internal representation
# as much as possible
self.assertEqual(len(actual), len(expected))
for act, exp in zip(actual, expected):
act = np.asarray(act)
exp = np.asarray(exp, dtype=np.int8)
tm.assert_numpy_array_equal(act, exp)
# label changing [w/o mutation]
ind2 = self.index.set_labels(new_labels)
assert_matching(ind2.labels, new_labels)
assert_matching(self.index.labels, labels)
# label changing [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_labels(new_labels, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.labels, new_labels)
# label changing specific level [w/o mutation]
ind2 = self.index.set_labels(new_labels[0], level=0)
assert_matching(ind2.labels, [new_labels[0], labels[1]])
assert_matching(self.index.labels, labels)
ind2 = self.index.set_labels(new_labels[1], level=1)
assert_matching(ind2.labels, [labels[0], new_labels[1]])
assert_matching(self.index.labels, labels)
# label changing multiple levels [w/o mutation]
ind2 = self.index.set_labels(new_labels, level=[0, 1])
assert_matching(ind2.labels, new_labels)
assert_matching(self.index.labels, labels)
# label changing specific level [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.labels, [new_labels[0], labels[1]])
assert_matching(self.index.labels, labels)
ind2 = self.index.copy()
inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.labels, [labels[0], new_labels[1]])
assert_matching(self.index.labels, labels)
# label changing multiple levels [w/ mutation]
ind2 = self.index.copy()
inplace_return = ind2.set_labels(new_labels, level=[0, 1],
inplace=True)
self.assertIsNone(inplace_return)
assert_matching(ind2.labels, new_labels)
assert_matching(self.index.labels, labels)
def test_set_levels_labels_names_bad_input(self):
levels, labels = self.index.levels, self.index.labels
names = self.index.names
with tm.assertRaisesRegexp(ValueError, 'Length of levels'):
self.index.set_levels([levels[0]])
with tm.assertRaisesRegexp(ValueError, 'Length of labels'):
self.index.set_labels([labels[0]])
with tm.assertRaisesRegexp(ValueError, 'Length of names'):
self.index.set_names([names[0]])
# shouldn't scalar data error, instead should demand list-like
with tm.assertRaisesRegexp(TypeError, 'list of lists-like'):
self.index.set_levels(levels[0])
# shouldn't scalar data error, instead should demand list-like
with tm.assertRaisesRegexp(TypeError, 'list of lists-like'):
self.index.set_labels(labels[0])
# shouldn't scalar data error, instead should demand list-like
with tm.assertRaisesRegexp(TypeError, 'list-like'):
self.index.set_names(names[0])
# should have equal lengths
with tm.assertRaisesRegexp(TypeError, 'list of lists-like'):
self.index.set_levels(levels[0], level=[0, 1])
with tm.assertRaisesRegexp(TypeError, 'list-like'):
self.index.set_levels(levels, level=0)
# should have equal lengths
with tm.assertRaisesRegexp(TypeError, 'list of lists-like'):
self.index.set_labels(labels[0], level=[0, 1])
with tm.assertRaisesRegexp(TypeError, 'list-like'):
self.index.set_labels(labels, level=0)
# should have equal lengths
with tm.assertRaisesRegexp(ValueError, 'Length of names'):
self.index.set_names(names[0], level=[0, 1])
with tm.assertRaisesRegexp(TypeError, 'string'):
self.index.set_names(names, level=0)
def test_metadata_immutable(self):
levels, labels = self.index.levels, self.index.labels
# shouldn't be able to set at either the top level or base level
mutable_regex = re.compile('does not support mutable operations')
with assertRaisesRegexp(TypeError, mutable_regex):
levels[0] = levels[0]
with assertRaisesRegexp(TypeError, mutable_regex):
levels[0][0] = levels[0][0]
# ditto for labels
with assertRaisesRegexp(TypeError, mutable_regex):
labels[0] = labels[0]
with assertRaisesRegexp(TypeError, mutable_regex):
labels[0][0] = labels[0][0]
# and for names
names = self.index.names
with assertRaisesRegexp(TypeError, mutable_regex):
names[0] = names[0]
def test_inplace_mutation_resets_values(self):
levels = [['a', 'b', 'c'], [4]]
levels2 = [[1, 2, 3], ['a']]
labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]]
mi1 = MultiIndex(levels=levels, labels=labels)
mi2 = MultiIndex(levels=levels2, labels=labels)
vals = mi1.values.copy()
vals2 = mi2.values.copy()
self.assertIsNotNone(mi1._tuples)
# make sure level setting works
new_vals = mi1.set_levels(levels2).values
assert_almost_equal(vals2, new_vals)
# non-inplace doesn't kill _tuples [implementation detail]
assert_almost_equal(mi1._tuples, vals)
# and values is still same too
assert_almost_equal(mi1.values, vals)
# inplace should kill _tuples
mi1.set_levels(levels2, inplace=True)
assert_almost_equal(mi1.values, vals2)
# make sure label setting works too
labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
exp_values = np.empty((6, ), dtype=object)
exp_values[:] = [(long(1), 'a')] * 6
# must be 1d array of tuples
self.assertEqual(exp_values.shape, (6, ))
new_values = mi2.set_labels(labels2).values
# not inplace shouldn't change
assert_almost_equal(mi2._tuples, vals2)
# should have correct values
assert_almost_equal(exp_values, new_values)
# and again setting inplace should kill _tuples, etc
mi2.set_labels(labels2, inplace=True)
assert_almost_equal(mi2.values, new_values)
def test_copy_in_constructor(self):
levels = np.array(["a", "b", "c"])
labels = np.array([1, 1, 2, 0, 0, 1, 1])
val = labels[0]
mi = MultiIndex(levels=[levels, levels], labels=[labels, labels],
copy=True)
self.assertEqual(mi.labels[0][0], val)
labels[0] = 15
self.assertEqual(mi.labels[0][0], val)
val = levels[0]
levels[0] = "PANDA"
self.assertEqual(mi.levels[0][0], val)
def test_set_value_keeps_names(self):
# motivating example from #3742
lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe']
lev2 = ['1', '2', '3'] * 2
idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number'])
df = pd.DataFrame(
np.random.randn(6, 4),
columns=['one', 'two', 'three', 'four'],
index=idx)
df = df.sortlevel()
self.assertIsNone(df.is_copy)
self.assertEqual(df.index.names, ('Name', 'Number'))
df = df.set_value(('grethe', '4'), 'one', 99.34)
self.assertIsNone(df.is_copy)
self.assertEqual(df.index.names, ('Name', 'Number'))
def test_names(self):
# names are assigned in __init__
names = self.index_names
level_names = [level.name for level in self.index.levels]
self.assertEqual(names, level_names)
# setting bad names on existing
index = self.index
assertRaisesRegexp(ValueError, "^Length of names", setattr, index,
"names", list(index.names) + ["third"])
assertRaisesRegexp(ValueError, "^Length of names", setattr, index,
"names", [])
# initializing with bad names (should always be equivalent)
major_axis, minor_axis = self.index.levels
major_labels, minor_labels = self.index.labels
assertRaisesRegexp(ValueError, "^Length of names", MultiIndex,
levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels],
names=['first'])
assertRaisesRegexp(ValueError, "^Length of names", MultiIndex,
levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels],
names=['first', 'second', 'third'])
# names are assigned
index.names = ["a", "b"]
ind_names = list(index.names)
level_names = [level.name for level in index.levels]
self.assertEqual(ind_names, level_names)
def test_reference_duplicate_name(self):
idx = MultiIndex.from_tuples(
[('a', 'b'), ('c', 'd')], names=['x', 'x'])
self.assertTrue(idx._reference_duplicate_name('x'))
idx = MultiIndex.from_tuples(
[('a', 'b'), ('c', 'd')], names=['x', 'y'])
self.assertFalse(idx._reference_duplicate_name('x'))
def test_astype(self):
expected = self.index.copy()
actual = self.index.astype('O')
assert_copy(actual.levels, expected.levels)
assert_copy(actual.labels, expected.labels)
self.check_level_names(actual, expected.names)
with assertRaisesRegexp(TypeError, "^Setting.*dtype.*object"):
self.index.astype(np.dtype(int))
def test_constructor_single_level(self):
single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
labels=[[0, 1, 2, 3]], names=['first'])
tm.assertIsInstance(single_level, Index)
self.assertNotIsInstance(single_level, MultiIndex)
self.assertEqual(single_level.name, 'first')
single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
labels=[[0, 1, 2, 3]])
self.assertIsNone(single_level.name)
def test_constructor_no_levels(self):
assertRaisesRegexp(ValueError, "non-zero number of levels/labels",
MultiIndex, levels=[], labels=[])
both_re = re.compile('Must pass both levels and labels')
with tm.assertRaisesRegexp(TypeError, both_re):
MultiIndex(levels=[])
with tm.assertRaisesRegexp(TypeError, both_re):
MultiIndex(labels=[])
def test_constructor_mismatched_label_levels(self):
labels = [np.array([1]), np.array([2]), np.array([3])]
levels = ["a"]
assertRaisesRegexp(ValueError, "Length of levels and labels must be"
" the same", MultiIndex, levels=levels,
labels=labels)
length_error = re.compile('>= length of level')
label_error = re.compile(r'Unequal label lengths: \[4, 2\]')
# important to check that it's looking at the right thing.
with tm.assertRaisesRegexp(ValueError, length_error):
MultiIndex(levels=[['a'], ['b']],
labels=[[0, 1, 2, 3], [0, 3, 4, 1]])
with tm.assertRaisesRegexp(ValueError, label_error):
MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]])
# external API
with tm.assertRaisesRegexp(ValueError, length_error):
self.index.copy().set_levels([['a'], ['b']])
with tm.assertRaisesRegexp(ValueError, label_error):
self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]])
# deprecated properties
with warnings.catch_warnings():
warnings.simplefilter('ignore')
with tm.assertRaisesRegexp(ValueError, length_error):
self.index.copy().levels = [['a'], ['b']]
with tm.assertRaisesRegexp(ValueError, label_error):
self.index.copy().labels = [[0, 0, 0, 0], [0, 0]]
def assert_multiindex_copied(self, copy, original):
# levels should be (at least, shallow copied)
assert_copy(copy.levels, original.levels)
assert_almost_equal(copy.labels, original.labels)
# labels doesn't matter which way copied
assert_almost_equal(copy.labels, original.labels)
self.assertIsNot(copy.labels, original.labels)
# names doesn't matter which way copied
self.assertEqual(copy.names, original.names)
self.assertIsNot(copy.names, original.names)
# sort order should be copied
self.assertEqual(copy.sortorder, original.sortorder)
def test_copy(self):
i_copy = self.index.copy()
self.assert_multiindex_copied(i_copy, self.index)
def test_shallow_copy(self):
i_copy = self.index._shallow_copy()
self.assert_multiindex_copied(i_copy, self.index)
def test_view(self):
i_view = self.index.view()
self.assert_multiindex_copied(i_view, self.index)
def check_level_names(self, index, names):
self.assertEqual([level.name for level in index.levels], list(names))
def test_changing_names(self):
# names should be applied to levels
level_names = [level.name for level in self.index.levels]
self.check_level_names(self.index, self.index.names)
view = self.index.view()
copy = self.index.copy()
shallow_copy = self.index._shallow_copy()
# changing names should change level names on object
new_names = [name + "a" for name in self.index.names]
self.index.names = new_names
self.check_level_names(self.index, new_names)
# but not on copies
self.check_level_names(view, level_names)
self.check_level_names(copy, level_names)
self.check_level_names(shallow_copy, level_names)
# and copies shouldn't change original
shallow_copy.names = [name + "c" for name in shallow_copy.names]
self.check_level_names(self.index, new_names)
def test_duplicate_names(self):
self.index.names = ['foo', 'foo']
assertRaisesRegexp(KeyError, 'Level foo not found',
self.index._get_level_number, 'foo')
def test_get_level_number_integer(self):
self.index.names = [1, 0]
self.assertEqual(self.index._get_level_number(1), 0)
self.assertEqual(self.index._get_level_number(0), 1)
self.assertRaises(IndexError, self.index._get_level_number, 2)
assertRaisesRegexp(KeyError, 'Level fourth not found',
self.index._get_level_number, 'fourth')
def test_from_arrays(self):
arrays = []
for lev, lab in zip(self.index.levels, self.index.labels):
arrays.append(np.asarray(lev).take(lab))
result = MultiIndex.from_arrays(arrays)
self.assertEqual(list(result), list(self.index))
# infer correctly
result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')],
['a', 'b']])
self.assertTrue(result.levels[0].equals(Index([Timestamp('20130101')
])))
self.assertTrue(result.levels[1].equals(Index(['a', 'b'])))
def test_from_arrays_index_series_datetimetz(self):
idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3,
tz='US/Eastern')
idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3,
tz='Asia/Tokyo')
result = pd.MultiIndex.from_arrays([idx1, idx2])
tm.assert_index_equal(result.get_level_values(0), idx1)
tm.assert_index_equal(result.get_level_values(1), idx2)
result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)])
tm.assert_index_equal(result2.get_level_values(0), idx1)
tm.assert_index_equal(result2.get_level_values(1), idx2)
tm.assert_index_equal(result, result2)
def test_from_arrays_index_series_timedelta(self):
idx1 = pd.timedelta_range('1 days', freq='D', periods=3)
idx2 = pd.timedelta_range('2 hours', freq='H', periods=3)
result = pd.MultiIndex.from_arrays([idx1, idx2])
tm.assert_index_equal(result.get_level_values(0), idx1)
tm.assert_index_equal(result.get_level_values(1), idx2)
result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)])
tm.assert_index_equal(result2.get_level_values(0), idx1)
tm.assert_index_equal(result2.get_level_values(1), idx2)
tm.assert_index_equal(result, result2)
def test_from_arrays_index_series_period(self):
idx1 = pd.period_range('2011-01-01', freq='D', periods=3)
idx2 = pd.period_range('2015-01-01', freq='H', periods=3)
result = pd.MultiIndex.from_arrays([idx1, idx2])
tm.assert_index_equal(result.get_level_values(0), idx1)
tm.assert_index_equal(result.get_level_values(1), idx2)
result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)])
tm.assert_index_equal(result2.get_level_values(0), idx1)
tm.assert_index_equal(result2.get_level_values(1), idx2)
tm.assert_index_equal(result, result2)
def test_from_product(self):
first = ['foo', 'bar', 'buz']
second = ['a', 'b', 'c']
names = ['first', 'second']
result = MultiIndex.from_product([first, second], names=names)
tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'),
('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'),
('buz', 'c')]
expected = MultiIndex.from_tuples(tuples, names=names)
tm.assert_numpy_array_equal(result, expected)
self.assertEqual(result.names, names)
def test_from_product_datetimeindex(self):
dt_index = date_range('2000-01-01', periods=2)
mi = pd.MultiIndex.from_product([[1, 2], dt_index])
etalon = pd.lib.list_to_object_array([(1, pd.Timestamp(
'2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp(
'2000-01-01')), (2, pd.Timestamp('2000-01-02'))])
tm.assert_numpy_array_equal(mi.values, etalon)
def test_values_boxed(self):
tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT),
(3, pd.Timestamp('2000-01-03')),
(1, pd.Timestamp('2000-01-04')),
(2, pd.Timestamp('2000-01-02')),
(3, pd.Timestamp('2000-01-03'))]
mi = pd.MultiIndex.from_tuples(tuples)
tm.assert_numpy_array_equal(mi.values,
pd.lib.list_to_object_array(tuples))
# Check that code branches for boxed values produce identical results
tm.assert_numpy_array_equal(mi.values[:4], mi[:4].values)
def test_append(self):
result = self.index[:3].append(self.index[3:])
self.assertTrue(result.equals(self.index))
foos = [self.index[:1], self.index[1:3], self.index[3:]]
result = foos[0].append(foos[1:])
self.assertTrue(result.equals(self.index))
# empty
result = self.index.append([])
self.assertTrue(result.equals(self.index))
def test_get_level_values(self):
result = self.index.get_level_values(0)
expected = ['foo', 'foo', 'bar', 'baz', 'qux', 'qux']
tm.assert_numpy_array_equal(result, expected)
self.assertEqual(result.name, 'first')
result = self.index.get_level_values('first')
expected = self.index.get_level_values(0)
tm.assert_numpy_array_equal(result, expected)
# GH 10460
index = MultiIndex(levels=[CategoricalIndex(
['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array(
[0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])])
exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B'])
self.assert_index_equal(index.get_level_values(0), exp)
exp = CategoricalIndex([1, 2, 3, 1, 2, 3])
self.assert_index_equal(index.get_level_values(1), exp)
def test_get_level_values_na(self):
arrays = [['a', 'b', 'b'], [1, np.nan, 2]]
index = pd.MultiIndex.from_arrays(arrays)
values = index.get_level_values(1)
expected = [1, np.nan, 2]
tm.assert_numpy_array_equal(values.values.astype(float), expected)
arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]]
index = pd.MultiIndex.from_arrays(arrays)
values = index.get_level_values(1)
expected = [np.nan, np.nan, 2]
tm.assert_numpy_array_equal(values.values.astype(float), expected)
arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]]
index = pd.MultiIndex.from_arrays(arrays)
values = index.get_level_values(0)
expected = [np.nan, np.nan, np.nan]
tm.assert_numpy_array_equal(values.values.astype(float), expected)
values = index.get_level_values(1)
expected = np.array(['a', np.nan, 1], dtype=object)
tm.assert_numpy_array_equal(values.values, expected)
arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])]
index = pd.MultiIndex.from_arrays(arrays)
values = index.get_level_values(1)
expected = pd.DatetimeIndex([0, 1, pd.NaT])
tm.assert_numpy_array_equal(values.values, expected.values)
arrays = [[], []]
index = pd.MultiIndex.from_arrays(arrays)
values = index.get_level_values(0)
self.assertEqual(values.shape, (0, ))
def test_reorder_levels(self):
# this blows up
assertRaisesRegexp(IndexError, '^Too many levels',
self.index.reorder_levels, [2, 1, 0])
def test_nlevels(self):
self.assertEqual(self.index.nlevels, 2)
def test_iter(self):
result = list(self.index)
expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'),
('baz', 'two'), ('qux', 'one'), ('qux', 'two')]
self.assertEqual(result, expected)
def test_legacy_pickle(self):
if PY3:
raise nose.SkipTest("testing for legacy pickles not "
"support on py3")
path = tm.get_data_path('multiindex_v1.pickle')
obj = pd.read_pickle(path)
obj2 = MultiIndex.from_tuples(obj.values)
self.assertTrue(obj.equals(obj2))
res = obj.get_indexer(obj)
exp = np.arange(len(obj))
assert_almost_equal(res, exp)
res = obj.get_indexer(obj2[::-1])
exp = obj.get_indexer(obj[::-1])
exp2 = obj2.get_indexer(obj2[::-1])
assert_almost_equal(res, exp)
assert_almost_equal(exp, exp2)
def test_legacy_v2_unpickle(self):
# 0.7.3 -> 0.8.0 format manage
path = tm.get_data_path('mindex_073.pickle')
obj = pd.read_pickle(path)
obj2 = MultiIndex.from_tuples(obj.values)
self.assertTrue(obj.equals(obj2))
res = obj.get_indexer(obj)
exp = np.arange(len(obj))
assert_almost_equal(res, exp)
res = obj.get_indexer(obj2[::-1])
exp = obj.get_indexer(obj[::-1])
exp2 = obj2.get_indexer(obj2[::-1])
assert_almost_equal(res, exp)
assert_almost_equal(exp, exp2)
def test_roundtrip_pickle_with_tz(self):
# GH 8367
# round-trip of timezone
index = MultiIndex.from_product(
[[1, 2], ['a', 'b'], date_range('20130101', periods=3,
tz='US/Eastern')
], names=['one', 'two', 'three'])
unpickled = self.round_trip_pickle(index)
self.assertTrue(index.equal_levels(unpickled))
def test_from_tuples_index_values(self):
result = MultiIndex.from_tuples(self.index)
self.assertTrue((result.values == self.index.values).all())
def test_contains(self):
self.assertIn(('foo', 'two'), self.index)
self.assertNotIn(('bar', 'two'), self.index)
self.assertNotIn(None, self.index)
def test_is_all_dates(self):
self.assertFalse(self.index.is_all_dates)
def test_is_numeric(self):
# MultiIndex is never numeric
self.assertFalse(self.index.is_numeric())
def test_getitem(self):
# scalar
self.assertEqual(self.index[2], ('bar', 'one'))
# slice
result = self.index[2:5]
expected = self.index[[2, 3, 4]]
self.assertTrue(result.equals(expected))
# boolean
result = self.index[[True, False, True, False, True, True]]
result2 = self.index[np.array([True, False, True, False, True, True])]
expected = self.index[[0, 2, 4, 5]]
self.assertTrue(result.equals(expected))
self.assertTrue(result2.equals(expected))
def test_getitem_group_select(self):
sorted_idx, _ = self.index.sortlevel(0)
self.assertEqual(sorted_idx.get_loc('baz'), slice(3, 4))
self.assertEqual(sorted_idx.get_loc('foo'), slice(0, 2))
def test_get_loc(self):
self.assertEqual(self.index.get_loc(('foo', 'two')), 1)
self.assertEqual(self.index.get_loc(('baz', 'two')), 3)
self.assertRaises(KeyError, self.index.get_loc, ('bar', 'two'))
self.assertRaises(KeyError, self.index.get_loc, 'quux')
self.assertRaises(NotImplementedError, self.index.get_loc, 'foo',
method='nearest')
# 3 levels
index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(
lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array(
[0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])])
self.assertRaises(KeyError, index.get_loc, (1, 1))
self.assertEqual(index.get_loc((2, 0)), slice(3, 5))
def test_get_loc_duplicates(self):
index = Index([2, 2, 2, 2])
result = index.get_loc(2)
expected = slice(0, 4)
self.assertEqual(result, expected)
# self.assertRaises(Exception, index.get_loc, 2)
index = Index(['c', 'a', 'a', 'b', 'b'])
rs = index.get_loc('c')
xp = 0
assert (rs == xp)
def test_get_loc_level(self):
index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(
lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array(
[0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])])
loc, new_index = index.get_loc_level((0, 1))
expected = slice(1, 2)
exp_index = index[expected].droplevel(0).droplevel(0)
self.assertEqual(loc, expected)
self.assertTrue(new_index.equals(exp_index))
loc, new_index = index.get_loc_level((0, 1, 0))
expected = 1
self.assertEqual(loc, expected)
self.assertIsNone(new_index)
self.assertRaises(KeyError, index.get_loc_level, (2, 2))
index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array(
[0, 0, 0, 0]), np.array([0, 1, 2, 3])])
result, new_index = index.get_loc_level((2000, slice(None, None)))
expected = slice(None, None)
self.assertEqual(result, expected)
self.assertTrue(new_index.equals(index.droplevel(0)))
def test_slice_locs(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
slob = slice(*idx.slice_locs(df.index[5], df.index[15]))
sliced = stacked[slob]
expected = df[5:16].stack()
tm.assert_almost_equal(sliced.values, expected.values)
slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30),
df.index[15] - timedelta(seconds=30)))
sliced = stacked[slob]
expected = df[6:15].stack()
tm.assert_almost_equal(sliced.values, expected.values)
def test_slice_locs_with_type_mismatch(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
assertRaisesRegexp(TypeError, '^Level type mismatch', idx.slice_locs,
(1, 3))
assertRaisesRegexp(TypeError, '^Level type mismatch', idx.slice_locs,
df.index[5] + timedelta(seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with assertRaisesRegexp(TypeError, '^Level type mismatch'):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with assertRaisesRegexp(TypeError, '^Level type mismatch'):
idx.slice_locs(df.index[1], (16, "a"))
def test_slice_locs_not_sorted(self):
index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(
lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array(
[0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])])
assertRaisesRegexp(KeyError, "[Kk]ey length.*greater than MultiIndex"
" lexsort depth", index.slice_locs, (1, 0, 1),
(2, 1, 0))
# works
sorted_index, _ = index.sortlevel(0)
# should there be a test case here???
sorted_index.slice_locs((1, 0, 1), (2, 1, 0))
def test_slice_locs_partial(self):
sorted_idx, _ = self.index.sortlevel(0)
result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one'))
self.assertEqual(result, (1, 5))
result = sorted_idx.slice_locs(None, ('qux', 'one'))
self.assertEqual(result, (0, 5))
result = sorted_idx.slice_locs(('foo', 'two'), None)
self.assertEqual(result, (1, len(sorted_idx)))
result = sorted_idx.slice_locs('bar', 'baz')
self.assertEqual(result, (2, 4))
def test_slice_locs_not_contained(self):
# some searchsorted action
index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]],
labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3],
[0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0)
result = index.slice_locs((1, 0), (5, 2))
self.assertEqual(result, (3, 6))
result = index.slice_locs(1, 5)
self.assertEqual(result, (3, 6))
result = index.slice_locs((2, 2), (5, 2))
self.assertEqual(result, (3, 6))
result = index.slice_locs(2, 5)
self.assertEqual(result, (3, 6))
result = index.slice_locs((1, 0), (6, 3))
self.assertEqual(result, (3, 8))
result = index.slice_locs(-1, 10)
self.assertEqual(result, (0, len(index)))
def test_consistency(self):
# need to construct an overflow
major_axis = lrange(70000)
minor_axis = lrange(10)
major_labels = np.arange(70000)
minor_labels = np.repeat(lrange(10), 7000)
# the fact that is works means it's consistent
index = MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels])
# inconsistent
major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3])
minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1])
index = MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels])
self.assertFalse(index.is_unique)
def test_truncate(self):
major_axis = Index(lrange(4))
minor_axis = Index(lrange(2))