forked from kubernetes-sigs/structured-merge-diff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathset.go
687 lines (610 loc) · 19.3 KB
/
set.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package fieldpath
import (
"fmt"
"sort"
"strings"
"sigs.k8s.io/structured-merge-diff/v4/schema"
)
// Set identifies a set of fields.
type Set struct {
// Members lists fields that are part of the set.
// TODO: will be serialized as a list of path elements.
Members PathElementSet
// Children lists child fields which themselves have children that are
// members of the set. Appearance in this list does not imply membership.
// Note: this is a tree, not an arbitrary graph.
Children SetNodeMap
}
// NewSet makes a set from a list of paths.
func NewSet(paths ...Path) *Set {
s := &Set{}
for _, p := range paths {
s.Insert(p)
}
return s
}
// Insert adds the field identified by `p` to the set. Important: parent fields
// are NOT added to the set; if that is desired, they must be added separately.
func (s *Set) Insert(p Path) {
if len(p) == 0 {
// Zero-length path identifies the entire object; we don't
// track top-level ownership.
return
}
for {
if len(p) == 1 {
s.Members.Insert(p[0])
return
}
s = s.Children.Descend(p[0])
p = p[1:]
}
}
// Union returns a Set containing elements which appear in either s or s2.
func (s *Set) Union(s2 *Set) *Set {
return &Set{
Members: *s.Members.Union(&s2.Members),
Children: *s.Children.Union(&s2.Children),
}
}
// Intersection returns a Set containing leaf elements which appear in both s
// and s2. Intersection can be constructed from Union and Difference operations
// (example in the tests) but it's much faster to do it in one pass.
func (s *Set) Intersection(s2 *Set) *Set {
return &Set{
Members: *s.Members.Intersection(&s2.Members),
Children: *s.Children.Intersection(&s2.Children),
}
}
// Difference returns a Set containing elements which:
// * appear in s
// * do not appear in s2
//
// In other words, for leaf fields, this acts like a regular set difference
// operation. When non leaf fields are compared with leaf fields ("parents"
// which contain "children"), the effect is:
// * parent - child = parent
// * child - parent = {empty set}
func (s *Set) Difference(s2 *Set) *Set {
return &Set{
Members: *s.Members.Difference(&s2.Members),
Children: *s.Children.Difference(s2),
}
}
// RecursiveDifference returns a Set containing elements which:
// * appear in s
// * do not appear in s2
//
// Compared to a regular difference,
// this removes every field **and its children** from s that is contained in s2.
//
// For example, with s containing `a.b.c` and s2 containing `a.b`,
// a RecursiveDifference will result in `a`, as the entire node `a.b` gets removed.
func (s *Set) RecursiveDifference(s2 *Set) *Set {
return &Set{
Members: *s.Members.Difference(&s2.Members),
Children: *s.Children.RecursiveDifference(s2),
}
}
// EnsureNamedFieldsAreMembers returns a Set that contains all the
// fields in s, as well as all the named fields that are typically not
// included. For example, a set made of "a.b.c" will end-up also owning
// "a" if it's a named fields but not "a.b" if it's a map.
func (s *Set) EnsureNamedFieldsAreMembers(sc *schema.Schema, tr schema.TypeRef) *Set {
members := PathElementSet{
members: make(sortedPathElements, 0, s.Members.Size()+len(s.Children.members)),
}
atom, _ := sc.Resolve(tr)
members.members = append(members.members, s.Members.members...)
for _, node := range s.Children.members {
// Only insert named fields.
if node.pathElement.FieldName != nil && atom.Map != nil {
if _, has := atom.Map.FindField(*node.pathElement.FieldName); has {
members.Insert(node.pathElement)
}
}
}
return &Set{
Members: members,
Children: *s.Children.EnsureNamedFieldsAreMembers(sc, tr),
}
}
// MustPrefixPattern is the same as PrefixPattern except it panics if parts can't be
// turned into a SetPattern.
func MustPrefixPattern(parts ...interface{}) *SetPattern {
result, err := PrefixPattern(parts...)
if err != nil {
panic(err)
}
return result
}
// PrefixPattern creates a SetPattern that matches all field paths prefixed by the given list of pattern path parts.
// The pattern parts may be PathPatterns, PathElements, strings (for field names) or ints (for array indices).
// `MatchAnyPathElement()` may be used as a pattern path part to wildcard match a field path part.
func PrefixPattern(parts ...interface{}) (*SetPattern, error) {
current := MatchAnySet() // match all field patch suffixes
for i := len(parts) - 1; i >= 0; i-- {
part := parts[i]
var pattern PathPattern
switch t := part.(type) {
case PathPattern:
pattern = t
case PathElement:
pattern = PathPattern{PathElement: t}
case string:
pattern = PathPattern{PathElement: PathElement{FieldName: &t}}
case int:
pattern = PathPattern{PathElement: PathElement{Index: &t}}
default:
return nil, fmt.Errorf("unexpected type %T", t)
}
current = &SetPattern{
Members: []*MemberSetPattern{{
Path: pattern,
Child: current,
}},
}
}
return current, nil
}
// MatchAnyPathElement returns a PathPattern that matches any path element.
func MatchAnyPathElement() PathPattern {
return PathPattern{Wildcard: true}
}
// MatchAnySet returns a SetPattern that matches any set.
func MatchAnySet() *SetPattern {
return &SetPattern{Wildcard: true}
}
// SetPattern defines a pattern that matches fields in a Set.
// SetPattern is structured much like a Set but with wildcard support.
type SetPattern struct {
// Wildcard indicates that all members and children are included in the match.
// If set, the Members field is ignored.
Wildcard bool
// Members provides patterns to match the members of a Set.
Members []*MemberSetPattern
}
// MemberSetPattern defines a pattern that matches the members of a Set.
// MemberSetPattern is structured much like the elements of a SetNodeMap, but
// with wildcard support.
type MemberSetPattern struct {
// Path provides a pattern to match members of a Set.
// If Path is a wildcard, all members of a Set are included in the match.
// Otherwise, if any Path is Equal to a member of a Set, that member is
// included in the match and the children of that member are matched
// against the Child pattern.
Path PathPattern
// Child provides a pattern to use for the children of matched members of a Set.
Child *SetPattern
}
// PathPattern defined a match pattern for a PathElement.
type PathPattern struct {
// Wildcard indicates that all PathElements are matched by this pattern.
// If set, PathElement is ignored.
Wildcard bool
// PathElement indicates that a PathElement is matched if it is Equal
// to this PathElement.
PathElement
}
// FilterByPattern returns a Set with only the field paths that match the pattern.
func (s *Set) FilterByPattern(pattern *SetPattern) *Set {
if pattern.Wildcard {
return s
}
members := PathElementSet{}
for _, m := range s.Members.members {
for _, pm := range pattern.Members {
if pm.Path.Wildcard || pm.Path.PathElement.Equals(m) {
members.Insert(m)
break
}
}
}
return &Set{
Members: members,
Children: *s.Children.FilterByPattern(pattern),
}
}
// Size returns the number of members of the set.
func (s *Set) Size() int {
return s.Members.Size() + s.Children.Size()
}
// Empty returns true if there are no members of the set. It is a separate
// function from Size since it's common to check whether size > 0, and
// potentially much faster to return as soon as a single element is found.
func (s *Set) Empty() bool {
if s.Members.Size() > 0 {
return false
}
return s.Children.Empty()
}
// Has returns true if the field referenced by `p` is a member of the set.
func (s *Set) Has(p Path) bool {
if len(p) == 0 {
// No one owns "the entire object"
return false
}
for {
if len(p) == 1 {
return s.Members.Has(p[0])
}
var ok bool
s, ok = s.Children.Get(p[0])
if !ok {
return false
}
p = p[1:]
}
}
// Equals returns true if s and s2 have exactly the same members.
func (s *Set) Equals(s2 *Set) bool {
return s.Members.Equals(&s2.Members) && s.Children.Equals(&s2.Children)
}
// String returns the set one element per line.
func (s *Set) String() string {
elements := []string{}
s.Iterate(func(p Path) {
elements = append(elements, p.String())
})
return strings.Join(elements, "\n")
}
// Iterate calls f once for each field that is a member of the set (preorder
// DFS). The path passed to f will be reused so make a copy if you wish to keep
// it.
func (s *Set) Iterate(f func(Path)) {
s.iteratePrefix(Path{}, f)
}
func (s *Set) iteratePrefix(prefix Path, f func(Path)) {
s.Members.Iterate(func(pe PathElement) { f(append(prefix, pe)) })
s.Children.iteratePrefix(prefix, f)
}
// WithPrefix returns the subset of paths which begin with the given prefix,
// with the prefix not included.
func (s *Set) WithPrefix(pe PathElement) *Set {
subset, ok := s.Children.Get(pe)
if !ok {
return NewSet()
}
return subset
}
// Leaves returns a set containing only the leaf paths
// of a set.
func (s *Set) Leaves() *Set {
leaves := PathElementSet{}
im := 0
ic := 0
// any members that are not also children are leaves
outer:
for im < len(s.Members.members) {
member := s.Members.members[im]
for ic < len(s.Children.members) {
d := member.Compare(s.Children.members[ic].pathElement)
if d == 0 {
ic++
im++
continue outer
} else if d < 0 {
break
} else /* if d > 0 */ {
ic++
}
}
leaves.members = append(leaves.members, member)
im++
}
return &Set{
Members: leaves,
Children: *s.Children.Leaves(),
}
}
// setNode is a pair of PathElement / Set, for the purpose of expressing
// nested set membership.
type setNode struct {
pathElement PathElement
set *Set
}
// SetNodeMap is a map of PathElement to subset.
type SetNodeMap struct {
members sortedSetNode
}
type sortedSetNode []setNode
// Implement the sort interface; this would permit bulk creation, which would
// be faster than doing it one at a time via Insert.
func (s sortedSetNode) Len() int { return len(s) }
func (s sortedSetNode) Less(i, j int) bool { return s[i].pathElement.Less(s[j].pathElement) }
func (s sortedSetNode) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// Descend adds pe to the set if necessary, returning the associated subset.
func (s *SetNodeMap) Descend(pe PathElement) *Set {
loc := sort.Search(len(s.members), func(i int) bool {
return !s.members[i].pathElement.Less(pe)
})
if loc == len(s.members) {
s.members = append(s.members, setNode{pathElement: pe, set: &Set{}})
return s.members[loc].set
}
if s.members[loc].pathElement.Equals(pe) {
return s.members[loc].set
}
s.members = append(s.members, setNode{})
copy(s.members[loc+1:], s.members[loc:])
s.members[loc] = setNode{pathElement: pe, set: &Set{}}
return s.members[loc].set
}
// Size returns the sum of the number of members of all subsets.
func (s *SetNodeMap) Size() int {
count := 0
for _, v := range s.members {
count += v.set.Size()
}
return count
}
// Empty returns false if there's at least one member in some child set.
func (s *SetNodeMap) Empty() bool {
for _, n := range s.members {
if !n.set.Empty() {
return false
}
}
return true
}
// Get returns (the associated set, true) or (nil, false) if there is none.
func (s *SetNodeMap) Get(pe PathElement) (*Set, bool) {
loc := sort.Search(len(s.members), func(i int) bool {
return !s.members[i].pathElement.Less(pe)
})
if loc == len(s.members) {
return nil, false
}
if s.members[loc].pathElement.Equals(pe) {
return s.members[loc].set, true
}
return nil, false
}
// Equals returns true if s and s2 have the same structure (same nested
// child sets).
func (s *SetNodeMap) Equals(s2 *SetNodeMap) bool {
if len(s.members) != len(s2.members) {
return false
}
for i := range s.members {
if !s.members[i].pathElement.Equals(s2.members[i].pathElement) {
return false
}
if !s.members[i].set.Equals(s2.members[i].set) {
return false
}
}
return true
}
// Union returns a SetNodeMap with members that appear in either s or s2.
func (s *SetNodeMap) Union(s2 *SetNodeMap) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.members) {
if s.members[i].pathElement.Less(s2.members[j].pathElement) {
out.members = append(out.members, s.members[i])
i++
} else {
if !s2.members[j].pathElement.Less(s.members[i].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set.Union(s2.members[j].set)})
i++
} else {
out.members = append(out.members, s2.members[j])
}
j++
}
}
if i < len(s.members) {
out.members = append(out.members, s.members[i:]...)
}
if j < len(s2.members) {
out.members = append(out.members, s2.members[j:]...)
}
return out
}
// Intersection returns a SetNodeMap with members that appear in both s and s2.
func (s *SetNodeMap) Intersection(s2 *SetNodeMap) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.members) {
if s.members[i].pathElement.Less(s2.members[j].pathElement) {
i++
} else {
if !s2.members[j].pathElement.Less(s.members[i].pathElement) {
res := s.members[i].set.Intersection(s2.members[j].set)
if !res.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: res})
}
i++
}
j++
}
}
return out
}
// Difference returns a SetNodeMap with members that appear in s but not in s2.
func (s *SetNodeMap) Difference(s2 *Set) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.Children.members) {
if s.members[i].pathElement.Less(s2.Children.members[j].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set})
i++
} else {
if !s2.Children.members[j].pathElement.Less(s.members[i].pathElement) {
diff := s.members[i].set.Difference(s2.Children.members[j].set)
// We aren't permitted to add nodes with no elements.
if !diff.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: diff})
}
i++
}
j++
}
}
if i < len(s.members) {
out.members = append(out.members, s.members[i:]...)
}
return out
}
// RecursiveDifference returns a SetNodeMap with members that appear in s but not in s2.
//
// Compared to a regular difference,
// this removes every field **and its children** from s that is contained in s2.
//
// For example, with s containing `a.b.c` and s2 containing `a.b`,
// a RecursiveDifference will result in `a`, as the entire node `a.b` gets removed.
func (s *SetNodeMap) RecursiveDifference(s2 *Set) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.Children.members) {
if s.members[i].pathElement.Less(s2.Children.members[j].pathElement) {
if !s2.Members.Has(s.members[i].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set})
}
i++
} else {
if !s2.Children.members[j].pathElement.Less(s.members[i].pathElement) {
if !s2.Members.Has(s.members[i].pathElement) {
diff := s.members[i].set.RecursiveDifference(s2.Children.members[j].set)
if !diff.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: diff})
}
}
i++
}
j++
}
}
if i < len(s.members) {
for _, c := range s.members[i:] {
if !s2.Members.Has(c.pathElement) {
out.members = append(out.members, c)
}
}
}
return out
}
// EnsureNamedFieldsAreMembers returns a set that contains all the named fields along with the leaves.
func (s *SetNodeMap) EnsureNamedFieldsAreMembers(sc *schema.Schema, tr schema.TypeRef) *SetNodeMap {
out := make(sortedSetNode, 0, s.Size())
atom, _ := sc.Resolve(tr)
for _, member := range s.members {
tr := schema.TypeRef{}
if member.pathElement.FieldName != nil && atom.Map != nil {
tr = atom.Map.ElementType
if sf, ok := atom.Map.FindField(*member.pathElement.FieldName); ok {
tr = sf.Type
}
} else if member.pathElement.Key != nil && atom.List != nil {
tr = atom.List.ElementType
}
out = append(out, setNode{
pathElement: member.pathElement,
set: member.set.EnsureNamedFieldsAreMembers(sc, tr),
})
}
return &SetNodeMap{
members: out,
}
}
// FilterByPattern returns a SetNodeMap with only the field paths that match the pattern.
func (s *SetNodeMap) FilterByPattern(pattern *SetPattern) *SetNodeMap {
if pattern.Wildcard {
return s
}
var out sortedSetNode
for _, member := range s.members {
for _, c := range pattern.Members {
if c.Path.Wildcard || c.Path.PathElement.Equals(member.pathElement) {
childSet := member.set.FilterByPattern(c.Child)
if childSet.Size() > 0 {
out = append(out, setNode{
pathElement: member.pathElement,
set: childSet,
})
}
break
}
}
}
return &SetNodeMap{
members: out,
}
}
// Iterate calls f for each PathElement in the set.
func (s *SetNodeMap) Iterate(f func(PathElement)) {
for _, n := range s.members {
f(n.pathElement)
}
}
func (s *SetNodeMap) iteratePrefix(prefix Path, f func(Path)) {
for _, n := range s.members {
pe := n.pathElement
n.set.iteratePrefix(append(prefix, pe), f)
}
}
// Leaves returns a SetNodeMap containing
// only setNodes with leaf PathElements.
func (s *SetNodeMap) Leaves() *SetNodeMap {
out := &SetNodeMap{}
out.members = make(sortedSetNode, len(s.members))
for i, n := range s.members {
out.members[i] = setNode{
pathElement: n.pathElement,
set: n.set.Leaves(),
}
}
return out
}
// Filter defines an interface for filtering a set.
// NewExcludeFilter can be used to create a filter that removes
// excluded field paths.
// NewPatternFilter can be used to create a filter that removes all fields except
// the fields that match a field path pattern. PrefixPattern and MustPrefixPattern
// can be used to define field path patterns.
type Filter interface {
// Filter returns a filtered copy of the set.
Filter(*Set) *Set
}
// NewExcludeFilter returns a filter that removes field paths in the exclude set.
func NewExcludeFilter(exclude *Set) Filter {
return excludeFilter{exclude}
}
// NewExcludeFilterMap converts a map of APIVersion to exclude set to a map of APIVersion to exclude filters.
func NewExcludeFilterMap(resetFields map[APIVersion]*Set) map[APIVersion]Filter {
result := make(map[APIVersion]Filter)
for k, v := range resetFields {
result[k] = excludeFilter{v}
}
return result
}
type excludeFilter struct {
excludeSet *Set
}
func (t excludeFilter) Filter(set *Set) *Set {
return set.RecursiveDifference(t.excludeSet)
}
// NewPatternFilter returns a filter that only includes field paths that match the pattern.
// PrefixPattern and MustPrefixPattern can help create basic SetPatterns.
func NewPatternFilter(pattern *SetPattern) Filter {
return patternFilter{pattern}
}
type patternFilter struct {
pattern *SetPattern
}
func (pf patternFilter) Filter(set *Set) *Set {
return set.FilterByPattern(pf.pattern)
}