forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
617 lines (522 loc) · 16.3 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
from __future__ import annotations
from decimal import Decimal
import operator
import os
from sys import byteorder
from typing import (
TYPE_CHECKING,
ContextManager,
cast,
)
import numpy as np
from pandas._config.localization import (
can_set_locale,
get_locales,
set_locale,
)
from pandas.compat import pa_version_under10p1
from pandas.core.dtypes.common import is_string_dtype
import pandas as pd
from pandas import (
ArrowDtype,
DataFrame,
Index,
MultiIndex,
RangeIndex,
Series,
)
from pandas._testing._io import (
round_trip_pathlib,
round_trip_pickle,
write_to_compressed,
)
from pandas._testing._warnings import (
assert_produces_warning,
maybe_produces_warning,
)
from pandas._testing.asserters import (
assert_almost_equal,
assert_attr_equal,
assert_categorical_equal,
assert_class_equal,
assert_contains_all,
assert_copy,
assert_datetime_array_equal,
assert_dict_equal,
assert_equal,
assert_extension_array_equal,
assert_frame_equal,
assert_index_equal,
assert_indexing_slices_equivalent,
assert_interval_array_equal,
assert_is_sorted,
assert_metadata_equivalent,
assert_numpy_array_equal,
assert_period_array_equal,
assert_series_equal,
assert_sp_array_equal,
assert_timedelta_array_equal,
raise_assert_detail,
)
from pandas._testing.compat import (
get_dtype,
get_obj,
)
from pandas._testing.contexts import (
decompress_file,
ensure_clean,
raises_chained_assignment_error,
set_timezone,
with_csv_dialect,
)
from pandas.core.arrays import (
BaseMaskedArray,
ExtensionArray,
NumpyExtensionArray,
)
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
from pandas.core.construction import extract_array
if TYPE_CHECKING:
from collections.abc import Callable
from pandas._typing import (
Dtype,
NpDtype,
)
from pandas.core.arrays import ArrowExtensionArray
UNSIGNED_INT_NUMPY_DTYPES: list[NpDtype] = ["uint8", "uint16", "uint32", "uint64"]
UNSIGNED_INT_EA_DTYPES: list[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"]
SIGNED_INT_NUMPY_DTYPES: list[NpDtype] = [int, "int8", "int16", "int32", "int64"]
SIGNED_INT_EA_DTYPES: list[Dtype] = ["Int8", "Int16", "Int32", "Int64"]
ALL_INT_NUMPY_DTYPES = UNSIGNED_INT_NUMPY_DTYPES + SIGNED_INT_NUMPY_DTYPES
ALL_INT_EA_DTYPES = UNSIGNED_INT_EA_DTYPES + SIGNED_INT_EA_DTYPES
ALL_INT_DTYPES: list[Dtype] = [*ALL_INT_NUMPY_DTYPES, *ALL_INT_EA_DTYPES]
FLOAT_NUMPY_DTYPES: list[NpDtype] = [float, "float32", "float64"]
FLOAT_EA_DTYPES: list[Dtype] = ["Float32", "Float64"]
ALL_FLOAT_DTYPES: list[Dtype] = [*FLOAT_NUMPY_DTYPES, *FLOAT_EA_DTYPES]
COMPLEX_DTYPES: list[Dtype] = [complex, "complex64", "complex128"]
STRING_DTYPES: list[Dtype] = [str, "str", "U"]
COMPLEX_FLOAT_DTYPES: list[Dtype] = [*COMPLEX_DTYPES, *FLOAT_NUMPY_DTYPES]
DATETIME64_DTYPES: list[Dtype] = ["datetime64[ns]", "M8[ns]"]
TIMEDELTA64_DTYPES: list[Dtype] = ["timedelta64[ns]", "m8[ns]"]
BOOL_DTYPES: list[Dtype] = [bool, "bool"]
BYTES_DTYPES: list[Dtype] = [bytes, "bytes"]
OBJECT_DTYPES: list[Dtype] = [object, "object"]
ALL_REAL_NUMPY_DTYPES = FLOAT_NUMPY_DTYPES + ALL_INT_NUMPY_DTYPES
ALL_REAL_EXTENSION_DTYPES = FLOAT_EA_DTYPES + ALL_INT_EA_DTYPES
ALL_REAL_DTYPES: list[Dtype] = [*ALL_REAL_NUMPY_DTYPES, *ALL_REAL_EXTENSION_DTYPES]
ALL_NUMERIC_DTYPES: list[Dtype] = [*ALL_REAL_DTYPES, *COMPLEX_DTYPES]
ALL_NUMPY_DTYPES = (
ALL_REAL_NUMPY_DTYPES
+ COMPLEX_DTYPES
+ STRING_DTYPES
+ DATETIME64_DTYPES
+ TIMEDELTA64_DTYPES
+ BOOL_DTYPES
+ OBJECT_DTYPES
+ BYTES_DTYPES
)
NARROW_NP_DTYPES = [
np.float16,
np.float32,
np.int8,
np.int16,
np.int32,
np.uint8,
np.uint16,
np.uint32,
]
PYTHON_DATA_TYPES = [
str,
int,
float,
complex,
list,
tuple,
range,
dict,
set,
frozenset,
bool,
bytes,
bytearray,
memoryview,
]
ENDIAN = {"little": "<", "big": ">"}[byteorder]
NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA, Decimal("NaN")]
NP_NAT_OBJECTS = [
cls("NaT", unit)
for cls in [np.datetime64, np.timedelta64]
for unit in [
"Y",
"M",
"W",
"D",
"h",
"m",
"s",
"ms",
"us",
"ns",
"ps",
"fs",
"as",
]
]
if not pa_version_under10p1:
import pyarrow as pa
UNSIGNED_INT_PYARROW_DTYPES = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
SIGNED_INT_PYARROW_DTYPES = [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
ALL_INT_PYARROW_DTYPES = UNSIGNED_INT_PYARROW_DTYPES + SIGNED_INT_PYARROW_DTYPES
ALL_INT_PYARROW_DTYPES_STR_REPR = [
str(ArrowDtype(typ)) for typ in ALL_INT_PYARROW_DTYPES
]
# pa.float16 doesn't seem supported
# https://github.com/apache/arrow/blob/master/python/pyarrow/src/arrow/python/helpers.cc#L86
FLOAT_PYARROW_DTYPES = [pa.float32(), pa.float64()]
FLOAT_PYARROW_DTYPES_STR_REPR = [
str(ArrowDtype(typ)) for typ in FLOAT_PYARROW_DTYPES
]
DECIMAL_PYARROW_DTYPES = [pa.decimal128(7, 3)]
STRING_PYARROW_DTYPES = [pa.string()]
BINARY_PYARROW_DTYPES = [pa.binary()]
TIME_PYARROW_DTYPES = [
pa.time32("s"),
pa.time32("ms"),
pa.time64("us"),
pa.time64("ns"),
]
DATE_PYARROW_DTYPES = [pa.date32(), pa.date64()]
DATETIME_PYARROW_DTYPES = [
pa.timestamp(unit=unit, tz=tz)
for unit in ["s", "ms", "us", "ns"]
for tz in [None, "UTC", "US/Pacific", "US/Eastern"]
]
TIMEDELTA_PYARROW_DTYPES = [pa.duration(unit) for unit in ["s", "ms", "us", "ns"]]
BOOL_PYARROW_DTYPES = [pa.bool_()]
# TODO: Add container like pyarrow types:
# https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
ALL_PYARROW_DTYPES = (
ALL_INT_PYARROW_DTYPES
+ FLOAT_PYARROW_DTYPES
+ DECIMAL_PYARROW_DTYPES
+ STRING_PYARROW_DTYPES
+ BINARY_PYARROW_DTYPES
+ TIME_PYARROW_DTYPES
+ DATE_PYARROW_DTYPES
+ DATETIME_PYARROW_DTYPES
+ TIMEDELTA_PYARROW_DTYPES
+ BOOL_PYARROW_DTYPES
)
ALL_REAL_PYARROW_DTYPES_STR_REPR = (
ALL_INT_PYARROW_DTYPES_STR_REPR + FLOAT_PYARROW_DTYPES_STR_REPR
)
else:
FLOAT_PYARROW_DTYPES_STR_REPR = []
ALL_INT_PYARROW_DTYPES_STR_REPR = []
ALL_PYARROW_DTYPES = []
ALL_REAL_PYARROW_DTYPES_STR_REPR = []
ALL_REAL_NULLABLE_DTYPES = (
FLOAT_NUMPY_DTYPES + ALL_REAL_EXTENSION_DTYPES + ALL_REAL_PYARROW_DTYPES_STR_REPR
)
arithmetic_dunder_methods = [
"__add__",
"__radd__",
"__sub__",
"__rsub__",
"__mul__",
"__rmul__",
"__floordiv__",
"__rfloordiv__",
"__truediv__",
"__rtruediv__",
"__pow__",
"__rpow__",
"__mod__",
"__rmod__",
]
comparison_dunder_methods = ["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]
# -----------------------------------------------------------------------------
# Comparators
def box_expected(expected, box_cls, transpose: bool = True):
"""
Helper function to wrap the expected output of a test in a given box_class.
Parameters
----------
expected : np.ndarray, Index, Series
box_cls : {Index, Series, DataFrame}
Returns
-------
subclass of box_cls
"""
if box_cls is pd.array:
if isinstance(expected, RangeIndex):
# pd.array would return an IntegerArray
expected = NumpyExtensionArray(np.asarray(expected._values))
else:
expected = pd.array(expected, copy=False)
elif box_cls is Index:
expected = Index(expected)
elif box_cls is Series:
expected = Series(expected)
elif box_cls is DataFrame:
expected = Series(expected).to_frame()
if transpose:
# for vector operations, we need a DataFrame to be a single-row,
# not a single-column, in order to operate against non-DataFrame
# vectors of the same length. But convert to two rows to avoid
# single-row special cases in datetime arithmetic
expected = expected.T
expected = pd.concat([expected] * 2, ignore_index=True)
elif box_cls is np.ndarray or box_cls is np.array:
expected = np.array(expected)
elif box_cls is to_array:
expected = to_array(expected)
else:
raise NotImplementedError(box_cls)
return expected
def to_array(obj):
"""
Similar to pd.array, but does not cast numpy dtypes to nullable dtypes.
"""
# temporary implementation until we get pd.array in place
dtype = getattr(obj, "dtype", None)
if dtype is None:
return np.asarray(obj)
return extract_array(obj, extract_numpy=True)
class SubclassedSeries(Series):
_metadata = ["testattr", "name"]
@property
def _constructor(self):
# For testing, those properties return a generic callable, and not
# the actual class. In this case that is equivalent, but it is to
# ensure we don't rely on the property returning a class
# See https://github.com/pandas-dev/pandas/pull/46018 and
# https://github.com/pandas-dev/pandas/issues/32638 and linked issues
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
@property
def _constructor_expanddim(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
class SubclassedDataFrame(DataFrame):
_metadata = ["testattr"]
@property
def _constructor(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
@property
def _constructor_sliced(self):
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
def convert_rows_list_to_csv_str(rows_list: list[str]) -> str:
"""
Convert list of CSV rows to single CSV-formatted string for current OS.
This method is used for creating expected value of to_csv() method.
Parameters
----------
rows_list : List[str]
Each element represents the row of csv.
Returns
-------
str
Expected output of to_csv() in current OS.
"""
sep = os.linesep
return sep.join(rows_list) + sep
def external_error_raised(expected_exception: type[Exception]) -> ContextManager:
"""
Helper function to mark pytest.raises that have an external error message.
Parameters
----------
expected_exception : Exception
Expected error to raise.
Returns
-------
Callable
Regular `pytest.raises` function with `match` equal to `None`.
"""
import pytest
return pytest.raises(expected_exception, match=None)
def get_cython_table_params(ndframe, func_names_and_expected):
"""
Combine frame, functions from com._cython_table
keys and expected result.
Parameters
----------
ndframe : DataFrame or Series
func_names_and_expected : Sequence of two items
The first item is a name of a NDFrame method ('sum', 'prod') etc.
The second item is the expected return value.
Returns
-------
list
List of three items (DataFrame, function, expected result)
"""
results = []
for func_name, expected in func_names_and_expected:
results.append((ndframe, func_name, expected))
return results
def get_op_from_name(op_name: str) -> Callable:
"""
The operator function for a given op name.
Parameters
----------
op_name : str
The op name, in form of "add" or "__add__".
Returns
-------
function
A function performing the operation.
"""
short_opname = op_name.strip("_")
try:
op = getattr(operator, short_opname)
except AttributeError:
# Assume it is the reverse operator
rop = getattr(operator, short_opname[1:])
op = lambda x, y: rop(y, x)
return op
# -----------------------------------------------------------------------------
# Indexing test helpers
def getitem(x):
return x
def setitem(x):
return x
def loc(x):
return x.loc
def iloc(x):
return x.iloc
def at(x):
return x.at
def iat(x):
return x.iat
# -----------------------------------------------------------------------------
_UNITS = ["s", "ms", "us", "ns"]
def get_finest_unit(left: str, right: str) -> str:
"""
Find the higher of two datetime64 units.
"""
if _UNITS.index(left) >= _UNITS.index(right):
return left
return right
def shares_memory(left, right) -> bool:
"""
Pandas-compat for np.shares_memory.
"""
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
return np.shares_memory(left, right)
elif isinstance(left, np.ndarray):
# Call with reversed args to get to unpacking logic below.
return shares_memory(right, left)
if isinstance(left, RangeIndex):
return False
if isinstance(left, MultiIndex):
return shares_memory(left._codes, right)
if isinstance(left, (Index, Series)):
return shares_memory(left._values, right)
if isinstance(left, NDArrayBackedExtensionArray):
return shares_memory(left._ndarray, right)
if isinstance(left, pd.core.arrays.SparseArray):
return shares_memory(left.sp_values, right)
if isinstance(left, pd.core.arrays.IntervalArray):
return shares_memory(left._left, right) or shares_memory(left._right, right)
if (
isinstance(left, ExtensionArray)
and is_string_dtype(left.dtype)
and left.dtype.storage == "pyarrow" # type: ignore[attr-defined]
):
# https://github.com/pandas-dev/pandas/pull/43930#discussion_r736862669
left = cast("ArrowExtensionArray", left)
if (
isinstance(right, ExtensionArray)
and is_string_dtype(right.dtype)
and right.dtype.storage == "pyarrow" # type: ignore[attr-defined]
):
right = cast("ArrowExtensionArray", right)
left_pa_data = left._pa_array
right_pa_data = right._pa_array
left_buf1 = left_pa_data.chunk(0).buffers()[1]
right_buf1 = right_pa_data.chunk(0).buffers()[1]
return left_buf1 == right_buf1
if isinstance(left, BaseMaskedArray) and isinstance(right, BaseMaskedArray):
# By convention, we'll say these share memory if they share *either*
# the _data or the _mask
return np.shares_memory(left._data, right._data) or np.shares_memory(
left._mask, right._mask
)
if isinstance(left, DataFrame) and len(left._mgr.blocks) == 1:
arr = left._mgr.blocks[0].values
return shares_memory(arr, right)
raise NotImplementedError(type(left), type(right))
__all__ = [
"ALL_INT_EA_DTYPES",
"ALL_INT_NUMPY_DTYPES",
"ALL_NUMPY_DTYPES",
"ALL_REAL_NUMPY_DTYPES",
"assert_almost_equal",
"assert_attr_equal",
"assert_categorical_equal",
"assert_class_equal",
"assert_contains_all",
"assert_copy",
"assert_datetime_array_equal",
"assert_dict_equal",
"assert_equal",
"assert_extension_array_equal",
"assert_frame_equal",
"assert_index_equal",
"assert_indexing_slices_equivalent",
"assert_interval_array_equal",
"assert_is_sorted",
"assert_metadata_equivalent",
"assert_numpy_array_equal",
"assert_period_array_equal",
"assert_produces_warning",
"assert_series_equal",
"assert_sp_array_equal",
"assert_timedelta_array_equal",
"at",
"BOOL_DTYPES",
"box_expected",
"BYTES_DTYPES",
"can_set_locale",
"COMPLEX_DTYPES",
"convert_rows_list_to_csv_str",
"DATETIME64_DTYPES",
"decompress_file",
"ENDIAN",
"ensure_clean",
"external_error_raised",
"FLOAT_EA_DTYPES",
"FLOAT_NUMPY_DTYPES",
"get_cython_table_params",
"get_dtype",
"getitem",
"get_locales",
"get_finest_unit",
"get_obj",
"get_op_from_name",
"iat",
"iloc",
"loc",
"maybe_produces_warning",
"NARROW_NP_DTYPES",
"NP_NAT_OBJECTS",
"NULL_OBJECTS",
"OBJECT_DTYPES",
"raise_assert_detail",
"raises_chained_assignment_error",
"round_trip_pathlib",
"round_trip_pickle",
"setitem",
"set_locale",
"set_timezone",
"shares_memory",
"SIGNED_INT_EA_DTYPES",
"SIGNED_INT_NUMPY_DTYPES",
"STRING_DTYPES",
"SubclassedDataFrame",
"SubclassedSeries",
"TIMEDELTA64_DTYPES",
"to_array",
"UNSIGNED_INT_EA_DTYPES",
"UNSIGNED_INT_NUMPY_DTYPES",
"with_csv_dialect",
"write_to_compressed",
]