forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatetimelike.py
790 lines (641 loc) · 25.5 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
"""
Base and utility classes for tseries type pandas objects.
"""
import operator
from typing import Set
import warnings
import numpy as np
from pandas._libs import NaT, iNaT, lib
from pandas._libs.algos import unique_deltas
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import Appender, cache_readonly, deprecate_kwarg
from pandas.core.dtypes.common import (
ensure_int64, is_dtype_equal, is_float, is_integer, is_list_like,
is_period_dtype, is_scalar)
from pandas.core.dtypes.generic import ABCIndex, ABCIndexClass, ABCSeries
from pandas.core import algorithms, ops
from pandas.core.accessor import PandasDelegate
from pandas.core.arrays import ExtensionOpsMixin
from pandas.core.arrays.datetimelike import (
DatetimeLikeArrayMixin, _ensure_datetimelike_to_i8)
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core.tools.timedeltas import to_timedelta
import pandas.io.formats.printing as printing
from pandas.tseries.frequencies import to_offset
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
def ea_passthrough(array_method):
"""
Make an alias for a method of the underlying ExtensionArray.
Parameters
----------
array_method : method on an Array class
Returns
-------
method
"""
def method(self, *args, **kwargs):
return array_method(self._data, *args, **kwargs)
method.__name__ = array_method.__name__
method.__doc__ = array_method.__doc__
return method
class DatetimeIndexOpsMixin(ExtensionOpsMixin):
"""
common ops mixin to support a unified interface datetimelike Index
"""
_data = None
# DatetimeLikeArrayMixin assumes subclasses are mutable, so these are
# properties there. They can be made into cache_readonly for Index
# subclasses bc they are immutable
inferred_freq = cache_readonly(
DatetimeLikeArrayMixin.inferred_freq.fget) # type: ignore
_isnan = cache_readonly(DatetimeLikeArrayMixin._isnan.fget) # type: ignore
hasnans = cache_readonly(
DatetimeLikeArrayMixin._hasnans.fget) # type: ignore
_hasnans = hasnans # for index / array -agnostic code
_resolution = cache_readonly(
DatetimeLikeArrayMixin._resolution.fget) # type: ignore
resolution = cache_readonly(
DatetimeLikeArrayMixin.resolution.fget) # type: ignore
_maybe_mask_results = ea_passthrough(
DatetimeLikeArrayMixin._maybe_mask_results)
__iter__ = ea_passthrough(DatetimeLikeArrayMixin.__iter__)
mean = ea_passthrough(DatetimeLikeArrayMixin.mean)
@property
def freq(self):
"""
Return the frequency object if it is set, otherwise None.
"""
return self._data.freq
@freq.setter
def freq(self, value):
# validation is handled by _data setter
self._data.freq = value
@property
def freqstr(self):
"""
Return the frequency object as a string if it is set, otherwise None.
"""
return self._data.freqstr
def unique(self, level=None):
if level is not None:
self._validate_index_level(level)
result = self._data.unique()
# Note: if `self` is already unique, then self.unique() should share
# a `freq` with self. If not already unique, then self.freq must be
# None, so again sharing freq is correct.
return self._shallow_copy(result._data)
@classmethod
def _create_comparison_method(cls, op):
"""
Create a comparison method that dispatches to ``cls.values``.
"""
def wrapper(self, other):
if isinstance(other, ABCSeries):
# the arrays defer to Series for comparison ops but the indexes
# don't, so we have to unwrap here.
other = other._values
result = op(self._data, maybe_unwrap_index(other))
return result
wrapper.__doc__ = op.__doc__
wrapper.__name__ = '__{}__'.format(op.__name__)
return wrapper
@property
def _ndarray_values(self):
return self._data._ndarray_values
# ------------------------------------------------------------------------
# Abstract data attributes
@property
def values(self):
# Note: PeriodArray overrides this to return an ndarray of objects.
return self._data._data
@property # type: ignore # https://github.com/python/mypy/issues/1362
@Appender(DatetimeLikeArrayMixin.asi8.__doc__)
def asi8(self):
return self._data.asi8
# ------------------------------------------------------------------------
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
if not isinstance(other, ABCIndexClass):
return False
elif not isinstance(other, type(self)):
try:
other = type(self)(other)
except Exception:
return False
if not is_dtype_equal(self.dtype, other.dtype):
# have different timezone
return False
elif is_period_dtype(self):
if not is_period_dtype(other):
return False
if self.freq != other.freq:
return False
return np.array_equal(self.asi8, other.asi8)
@staticmethod
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
"""
Create the join wrapper methods.
"""
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
@staticmethod
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries,
DatetimeLikeArrayMixin)):
left = left.view('i8')
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries,
DatetimeLikeArrayMixin)):
right = right.view('i8')
results = joinf(left, right)
if with_indexers:
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
def _ensure_localized(self, arg, ambiguous='raise', nonexistent='raise',
from_utc=False):
# See DatetimeLikeArrayMixin._ensure_localized.__doc__
if getattr(self, 'tz', None):
# ensure_localized is only relevant for tz-aware DTI
result = self._data._ensure_localized(arg,
ambiguous=ambiguous,
nonexistent=nonexistent,
from_utc=from_utc)
return type(self)._simple_new(result, name=self.name)
return arg
def _box_values(self, values):
return self._data._box_values(values)
@Appender(_index_shared_docs['contains'] % _index_doc_kwargs)
def __contains__(self, key):
try:
res = self.get_loc(key)
return (is_scalar(res) or isinstance(res, slice) or
(is_list_like(res) and len(res)))
except (KeyError, TypeError, ValueError):
return False
# Try to run function on index first, and then on elements of index
# Especially important for group-by functionality
def map(self, mapper, na_action=None):
try:
result = mapper(self)
# Try to use this result if we can
if isinstance(result, np.ndarray):
result = Index(result)
if not isinstance(result, Index):
raise TypeError('The map function must return an Index object')
return result
except Exception:
return self.astype(object).map(mapper)
def sort_values(self, return_indexer=False, ascending=True):
"""
Return sorted copy of Index.
"""
if return_indexer:
_as = self.argsort()
if not ascending:
_as = _as[::-1]
sorted_index = self.take(_as)
return sorted_index, _as
else:
sorted_values = np.sort(self._ndarray_values)
attribs = self._get_attributes_dict()
freq = attribs['freq']
if freq is not None and not is_period_dtype(self):
if freq.n > 0 and not ascending:
freq = freq * -1
elif freq.n < 0 and ascending:
freq = freq * -1
attribs['freq'] = freq
if not ascending:
sorted_values = sorted_values[::-1]
return self._simple_new(sorted_values, **attribs)
@Appender(_index_shared_docs['take'] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = ensure_int64(indices)
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
if isinstance(maybe_slice, slice):
return self[maybe_slice]
taken = self._assert_take_fillable(self.asi8, indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=iNaT)
# keep freq in PeriodArray/Index, reset otherwise
freq = self.freq if is_period_dtype(self) else None
return self._shallow_copy(taken, freq=freq)
_can_hold_na = True
_na_value = NaT
"""The expected NA value to use with this index."""
@property
def asobject(self):
"""
Return object Index which contains boxed values.
.. deprecated:: 0.23.0
Use ``astype(object)`` instead.
*this is an internal non-public method*
"""
warnings.warn("'asobject' is deprecated. Use 'astype(object)'"
" instead", FutureWarning, stacklevel=2)
return self.astype(object)
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(to_timedelta(tolerance).to_numpy())
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError('list-like tolerance size must match '
'target index size')
return tolerance
def tolist(self):
"""
Return a list of the underlying data.
"""
return list(self.astype(object))
def min(self, axis=None, skipna=True, *args, **kwargs):
"""
Return the minimum value of the Index or minimum along
an axis.
See Also
--------
numpy.ndarray.min
Series.min : Return the minimum value in a Series.
"""
nv.validate_min(args, kwargs)
nv.validate_minmax_axis(axis)
if not len(self):
return self._na_value
i8 = self.asi8
try:
# quick check
if len(i8) and self.is_monotonic:
if i8[0] != iNaT:
return self._box_func(i8[0])
if self.hasnans:
if skipna:
min_stamp = self[~self._isnan].asi8.min()
else:
return self._na_value
else:
min_stamp = i8.min()
return self._box_func(min_stamp)
except ValueError:
return self._na_value
def argmin(self, axis=None, skipna=True, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmin
"""
nv.validate_argmin(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all() or not skipna:
return -1
i8 = i8.copy()
i8[mask] = np.iinfo('int64').max
return i8.argmin()
def max(self, axis=None, skipna=True, *args, **kwargs):
"""
Return the maximum value of the Index or maximum along
an axis.
See Also
--------
numpy.ndarray.max
Series.max : Return the maximum value in a Series.
"""
nv.validate_max(args, kwargs)
nv.validate_minmax_axis(axis)
if not len(self):
return self._na_value
i8 = self.asi8
try:
# quick check
if len(i8) and self.is_monotonic:
if i8[-1] != iNaT:
return self._box_func(i8[-1])
if self.hasnans:
if skipna:
max_stamp = self[~self._isnan].asi8.max()
else:
return self._na_value
else:
max_stamp = i8.max()
return self._box_func(max_stamp)
except ValueError:
return self._na_value
def argmax(self, axis=None, skipna=True, *args, **kwargs):
"""
Returns the indices of the maximum values along an axis.
See `numpy.ndarray.argmax` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmax
"""
nv.validate_argmax(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all() or not skipna:
return -1
i8 = i8.copy()
i8[mask] = 0
return i8.argmax()
# --------------------------------------------------------------------
# Rendering Methods
def _format_with_header(self, header, na_rep='NaT', **kwargs):
return header + list(self._format_native_types(na_rep, **kwargs))
@property
def _formatter_func(self):
raise AbstractMethodError(self)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value).
"""
attrs = super()._format_attrs()
for attrib in self._attributes:
if attrib == 'freq':
freq = self.freqstr
if freq is not None:
freq = "'%s'" % freq
attrs.append(('freq', freq))
return attrs
# --------------------------------------------------------------------
def _convert_scalar_indexer(self, key, kind=None):
"""
We don't allow integer or float indexing on datetime-like when using
loc.
Parameters
----------
key : label of the slice bound
kind : {'ix', 'loc', 'getitem', 'iloc'} or None
"""
assert kind in ['ix', 'loc', 'getitem', 'iloc', None]
# we don't allow integer/float indexing for loc
# we don't allow float indexing for ix/getitem
if is_scalar(key):
is_int = is_integer(key)
is_flt = is_float(key)
if kind in ['loc'] and (is_int or is_flt):
self._invalid_indexer('index', key)
elif kind in ['ix', 'getitem'] and is_flt:
self._invalid_indexer('index', key)
return super()._convert_scalar_indexer(key, kind=kind)
@classmethod
def _add_datetimelike_methods(cls):
"""
Add in the datetimelike methods (as we may have to override the
superclass).
"""
def __add__(self, other):
# dispatch to ExtensionArray implementation
result = self._data.__add__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__add__ = __add__
def __radd__(self, other):
# alias for __add__
return self.__add__(other)
cls.__radd__ = __radd__
def __sub__(self, other):
# dispatch to ExtensionArray implementation
result = self._data.__sub__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__sub__ = __sub__
def __rsub__(self, other):
result = self._data.__rsub__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__rsub__ = __rsub__
def isin(self, values, level=None):
"""
Compute boolean array of whether each index value is found in the
passed set of values.
Parameters
----------
values : set or sequence of values
Returns
-------
is_contained : ndarray (boolean dtype)
"""
if level is not None:
self._validate_index_level(level)
if not isinstance(values, type(self)):
try:
values = type(self)(values)
except ValueError:
return self.astype(object).isin(values)
return algorithms.isin(self.asi8, values.asi8)
def intersection(self, other, sort=False):
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
if self.equals(other):
return self._get_reconciled_name_object(other)
if len(self) == 0:
return self.copy()
if len(other) == 0:
return other.copy()
if not isinstance(other, type(self)):
result = Index.intersection(self, other, sort=sort)
if isinstance(result, type(self)):
if result.freq is None:
result.freq = to_offset(result.inferred_freq)
return result
elif (other.freq is None or self.freq is None or
other.freq != self.freq or
not other.freq.isAnchored() or
(not self.is_monotonic or not other.is_monotonic)):
result = Index.intersection(self, other, sort=sort)
# Invalidate the freq of `result`, which may not be correct at
# this point, depending on the values.
result.freq = None
if hasattr(self, 'tz'):
result = self._shallow_copy(result._values, name=result.name,
tz=result.tz, freq=None)
else:
result = self._shallow_copy(result._values, name=result.name,
freq=None)
if result.freq is None:
result.freq = to_offset(result.inferred_freq)
return result
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
# after sorting, the intersection always starts with the right index
# and ends with the index of which the last elements is smallest
end = min(left[-1], right[-1])
start = right[0]
if end < start:
return type(self)(data=[])
else:
lslice = slice(*left.slice_locs(start, end))
left_chunk = left.values[lslice]
return self._shallow_copy(left_chunk)
@Appender(_index_shared_docs['repeat'] % _index_doc_kwargs)
def repeat(self, repeats, axis=None):
nv.validate_repeat(tuple(), dict(axis=axis))
freq = self.freq if is_period_dtype(self) else None
return self._shallow_copy(self.asi8.repeat(repeats), freq=freq)
@Appender(_index_shared_docs['where'] % _index_doc_kwargs)
def where(self, cond, other=None):
other = _ensure_datetimelike_to_i8(other, to_utc=True)
values = _ensure_datetimelike_to_i8(self, to_utc=True)
result = np.where(cond, values, other).astype('i8')
result = self._ensure_localized(result, from_utc=True)
return self._shallow_copy(result)
def _summary(self, name=None):
"""
Return a summarized representation.
Parameters
----------
name : str
name to use in the summary representation
Returns
-------
String with a summarized representation of the index
"""
formatter = self._formatter_func
if len(self) > 0:
index_summary = ', %s to %s' % (formatter(self[0]),
formatter(self[-1]))
else:
index_summary = ''
if name is None:
name = type(self).__name__
result = '%s: %s entries%s' % (printing.pprint_thing(name),
len(self), index_summary)
if self.freq:
result += '\nFreq: %s' % self.freqstr
# display as values, not quoted
result = result.replace("'", "")
return result
def _concat_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class.
"""
attribs = self._get_attributes_dict()
attribs['name'] = name
# do not pass tz to set because tzlocal cannot be hashed
if len({str(x.dtype) for x in to_concat}) != 1:
raise ValueError('to_concat must have the same tz')
new_data = type(self._values)._concat_same_type(to_concat).asi8
# GH 3232: If the concat result is evenly spaced, we can retain the
# original frequency
is_diff_evenly_spaced = len(unique_deltas(new_data)) == 1
if not is_period_dtype(self) and not is_diff_evenly_spaced:
# reset freq
attribs['freq'] = None
return self._simple_new(new_data, **attribs)
@Appender(_index_shared_docs['astype'])
def astype(self, dtype, copy=True):
if is_dtype_equal(self.dtype, dtype) and copy is False:
# Ensure that self.astype(self.dtype) is self
return self
new_values = self._data.astype(dtype, copy=copy)
# pass copy=False because any copying will be done in the
# _data.astype call above
return Index(new_values,
dtype=new_values.dtype, name=self.name, copy=False)
@deprecate_kwarg(old_arg_name='n', new_arg_name='periods')
def shift(self, periods, freq=None):
"""
Shift index by desired number of time frequency increments.
This method is for shifting the values of datetime-like indexes
by a specified time increment a given number of times.
Parameters
----------
periods : int
Number of periods (or increments) to shift by,
can be positive or negative.
.. versionchanged:: 0.24.0
freq : pandas.DateOffset, pandas.Timedelta or string, optional
Frequency increment to shift by.
If None, the index is shifted by its own `freq` attribute.
Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc.
Returns
-------
pandas.DatetimeIndex
Shifted index.
See Also
--------
Index.shift : Shift values of Index.
PeriodIndex.shift : Shift values of PeriodIndex.
"""
result = self._data._time_shift(periods, freq=freq)
return type(self)(result, name=self.name)
def wrap_arithmetic_op(self, other, result):
if result is NotImplemented:
return NotImplemented
if isinstance(result, tuple):
# divmod, rdivmod
assert len(result) == 2
return (wrap_arithmetic_op(self, other, result[0]),
wrap_arithmetic_op(self, other, result[1]))
if not isinstance(result, Index):
# Index.__new__ will choose appropriate subclass for dtype
result = Index(result)
res_name = ops.get_op_result_name(self, other)
result.name = res_name
return result
def maybe_unwrap_index(obj):
"""
If operating against another Index object, we need to unwrap the underlying
data before deferring to the DatetimeArray/TimedeltaArray/PeriodArray
implementation, otherwise we will incorrectly return NotImplemented.
Parameters
----------
obj : object
Returns
-------
unwrapped object
"""
if isinstance(obj, ABCIndexClass):
return obj._data
return obj
class DatetimelikeDelegateMixin(PandasDelegate):
"""
Delegation mechanism, specific for Datetime, Timedelta, and Period types.
Functionality is delegated from the Index class to an Array class. A
few things can be customized
* _delegate_class : type
The class being delegated to.
* _delegated_methods, delegated_properties : List
The list of property / method names being delagated.
* raw_methods : Set
The set of methods whose results should should *not* be
boxed in an index, after being returned from the array
* raw_properties : Set
The set of properties whose results should should *not* be
boxed in an index, after being returned from the array
"""
# raw_methods : dispatch methods that shouldn't be boxed in an Index
_raw_methods = set() # type: Set[str]
# raw_properties : dispatch properties that shouldn't be boxed in an Index
_raw_properties = set() # type: Set[str]
name = None
_data = None
@property
def _delegate_class(self):
raise AbstractMethodError
def _delegate_property_get(self, name, *args, **kwargs):
result = getattr(self._data, name)
if name not in self._raw_properties:
result = Index(result, name=self.name)
return result
def _delegate_property_set(self, name, value, *args, **kwargs):
setattr(self._data, name, value)
def _delegate_method(self, name, *args, **kwargs):
result = operator.methodcaller(name, *args, **kwargs)(self._data)
if name not in self._raw_methods:
result = Index(result, name=self.name)
return result