forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreshaping.py
365 lines (310 loc) · 13.1 KB
/
reshaping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import itertools
import numpy as np
import pytest
import pandas as pd
from pandas.api.extensions import ExtensionArray
from pandas.core.internals import ExtensionBlock
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseReshapingTests(BaseExtensionTests):
"""Tests for reshaping and concatenation."""
@pytest.mark.parametrize("in_frame", [True, False])
def test_concat(self, data, in_frame):
wrapped = pd.Series(data)
if in_frame:
wrapped = pd.DataFrame(wrapped)
result = pd.concat([wrapped, wrapped], ignore_index=True)
assert len(result) == len(data) * 2
if in_frame:
dtype = result.dtypes[0]
else:
dtype = result.dtype
assert dtype == data.dtype
if hasattr(result._mgr, "blocks"):
assert isinstance(result._mgr.blocks[0], ExtensionBlock)
assert isinstance(result._mgr.arrays[0], ExtensionArray)
@pytest.mark.parametrize("in_frame", [True, False])
def test_concat_all_na_block(self, data_missing, in_frame):
valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1])
na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3])
if in_frame:
valid_block = pd.DataFrame({"a": valid_block})
na_block = pd.DataFrame({"a": na_block})
result = pd.concat([valid_block, na_block])
if in_frame:
expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])})
self.assert_frame_equal(result, expected)
else:
expected = pd.Series(data_missing.take([1, 1, 0, 0]))
self.assert_series_equal(result, expected)
def test_concat_mixed_dtypes(self, data):
# https://github.com/pandas-dev/pandas/issues/20762
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"A": [1, 2, 3]})
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
dfs = [df1, df2, df3]
# dataframes
result = pd.concat(dfs)
expected = pd.concat([x.astype(object) for x in dfs])
self.assert_frame_equal(result, expected)
# series
result = pd.concat([x["A"] for x in dfs])
expected = pd.concat([x["A"].astype(object) for x in dfs])
self.assert_series_equal(result, expected)
# simple test for just EA and one other
result = pd.concat([df1, df2.astype(object)])
expected = pd.concat([df1.astype("object"), df2.astype("object")])
self.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["A"].astype(object)])
expected = pd.concat([df1["A"].astype("object"), df2["A"].astype("object")])
self.assert_series_equal(result, expected)
def test_concat_columns(self, data, na_value):
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"B": [1, 2, 3]})
expected = pd.DataFrame({"A": data[:3], "B": [1, 2, 3]})
result = pd.concat([df1, df2], axis=1)
self.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["B"]], axis=1)
self.assert_frame_equal(result, expected)
# non-aligned
df2 = pd.DataFrame({"B": [1, 2, 3]}, index=[1, 2, 3])
expected = pd.DataFrame(
{
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
"B": [np.nan, 1, 2, 3],
}
)
result = pd.concat([df1, df2], axis=1)
self.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["B"]], axis=1)
self.assert_frame_equal(result, expected)
def test_concat_extension_arrays_copy_false(self, data, na_value):
# GH 20756
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"B": data[3:7]})
expected = pd.DataFrame(
{
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
"B": data[3:7],
}
)
result = pd.concat([df1, df2], axis=1, copy=False)
self.assert_frame_equal(result, expected)
def test_concat_with_reindex(self, data):
# GH-33027
a = pd.DataFrame({"a": data[:5]})
b = pd.DataFrame({"b": data[:5]})
result = pd.concat([a, b], ignore_index=True)
expected = pd.DataFrame(
{
"a": data.take(list(range(5)) + ([-1] * 5), allow_fill=True),
"b": data.take(([-1] * 5) + list(range(5)), allow_fill=True),
}
)
self.assert_frame_equal(result, expected)
def test_align(self, data, na_value):
a = data[:3]
b = data[2:5]
r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3]))
# Assumes that the ctor can take a list of scalars of the type
e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype))
e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype))
self.assert_series_equal(r1, e1)
self.assert_series_equal(r2, e2)
def test_align_frame(self, data, na_value):
a = data[:3]
b = data[2:5]
r1, r2 = pd.DataFrame({"A": a}).align(pd.DataFrame({"A": b}, index=[1, 2, 3]))
# Assumes that the ctor can take a list of scalars of the type
e1 = pd.DataFrame(
{"A": data._from_sequence(list(a) + [na_value], dtype=data.dtype)}
)
e2 = pd.DataFrame(
{"A": data._from_sequence([na_value] + list(b), dtype=data.dtype)}
)
self.assert_frame_equal(r1, e1)
self.assert_frame_equal(r2, e2)
def test_align_series_frame(self, data, na_value):
# https://github.com/pandas-dev/pandas/issues/20576
ser = pd.Series(data, name="a")
df = pd.DataFrame({"col": np.arange(len(ser) + 1)})
r1, r2 = ser.align(df)
e1 = pd.Series(
data._from_sequence(list(data) + [na_value], dtype=data.dtype),
name=ser.name,
)
self.assert_series_equal(r1, e1)
self.assert_frame_equal(r2, df)
def test_set_frame_expand_regular_with_extension(self, data):
df = pd.DataFrame({"A": [1] * len(data)})
df["B"] = data
expected = pd.DataFrame({"A": [1] * len(data), "B": data})
self.assert_frame_equal(df, expected)
def test_set_frame_expand_extension_with_regular(self, data):
df = pd.DataFrame({"A": data})
df["B"] = [1] * len(data)
expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
self.assert_frame_equal(df, expected)
def test_set_frame_overwrite_object(self, data):
# https://github.com/pandas-dev/pandas/issues/20555
df = pd.DataFrame({"A": [1] * len(data)}, dtype=object)
df["A"] = data
assert df.dtypes["A"] == data.dtype
def test_merge(self, data, na_value):
# GH-20743
df1 = pd.DataFrame({"ext": data[:3], "int1": [1, 2, 3], "key": [0, 1, 2]})
df2 = pd.DataFrame({"int2": [1, 2, 3, 4], "key": [0, 0, 1, 3]})
res = pd.merge(df1, df2)
exp = pd.DataFrame(
{
"int1": [1, 1, 2],
"int2": [1, 2, 3],
"key": [0, 0, 1],
"ext": data._from_sequence(
[data[0], data[0], data[1]], dtype=data.dtype
),
}
)
self.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
res = pd.merge(df1, df2, how="outer")
exp = pd.DataFrame(
{
"int1": [1, 1, 2, 3, np.nan],
"int2": [1, 2, 3, np.nan, 4],
"key": [0, 0, 1, 2, 3],
"ext": data._from_sequence(
[data[0], data[0], data[1], data[2], na_value], dtype=data.dtype
),
}
)
self.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
def test_merge_on_extension_array(self, data):
# GH 23020
a, b = data[:2]
key = type(data)._from_sequence([a, b], dtype=data.dtype)
df = pd.DataFrame({"key": key, "val": [1, 2]})
result = pd.merge(df, df, on="key")
expected = pd.DataFrame({"key": key, "val_x": [1, 2], "val_y": [1, 2]})
self.assert_frame_equal(result, expected)
# order
result = pd.merge(df.iloc[[1, 0]], df, on="key")
expected = expected.iloc[[1, 0]].reset_index(drop=True)
self.assert_frame_equal(result, expected)
def test_merge_on_extension_array_duplicates(self, data):
# GH 23020
a, b = data[:2]
key = type(data)._from_sequence([a, b, a], dtype=data.dtype)
df1 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
df2 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
result = pd.merge(df1, df2, on="key")
expected = pd.DataFrame(
{
"key": key.take([0, 0, 0, 0, 1]),
"val_x": [1, 1, 3, 3, 2],
"val_y": [1, 3, 1, 3, 2],
}
)
self.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"columns",
[
["A", "B"],
pd.MultiIndex.from_tuples(
[("A", "a"), ("A", "b")], names=["outer", "inner"]
),
],
)
def test_stack(self, data, columns):
df = pd.DataFrame({"A": data[:5], "B": data[:5]})
df.columns = columns
result = df.stack()
expected = df.astype(object).stack()
# we need a second astype(object), in case the constructor inferred
# object -> specialized, as is done for period.
expected = expected.astype(object)
if isinstance(expected, pd.Series):
assert result.dtype == df.iloc[:, 0].dtype
else:
assert all(result.dtypes == df.iloc[:, 0].dtype)
result = result.astype(object)
self.assert_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
# Two levels, uniform.
pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]),
# non-uniform
pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]),
# three levels, non-uniform
pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]),
pd.MultiIndex.from_tuples(
[
("A", "a", 1),
("A", "b", 0),
("A", "a", 0),
("B", "a", 0),
("B", "c", 1),
]
),
],
)
@pytest.mark.parametrize("obj", ["series", "frame"])
def test_unstack(self, data, index, obj):
data = data[: len(index)]
if obj == "series":
ser = pd.Series(data, index=index)
else:
ser = pd.DataFrame({"A": data, "B": data}, index=index)
n = index.nlevels
levels = list(range(n))
# [0, 1, 2]
# [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
combinations = itertools.chain.from_iterable(
itertools.permutations(levels, i) for i in range(1, n)
)
for level in combinations:
result = ser.unstack(level=level)
assert all(
isinstance(result[col].array, type(data)) for col in result.columns
)
if obj == "series":
# We should get the same result with to_frame+unstack+droplevel
df = ser.to_frame()
alt = df.unstack(level=level).droplevel(0, axis=1)
self.assert_frame_equal(result, alt)
expected = ser.astype(object).unstack(
level=level, fill_value=data.dtype.na_value
)
result = result.astype(object)
self.assert_frame_equal(result, expected)
def test_ravel(self, data):
# as long as EA is 1D-only, ravel is a no-op
result = data.ravel()
assert type(result) == type(data)
# Check that we have a view, not a copy
result[0] = result[1]
assert data[0] == data[1]
def test_transpose(self, data):
result = data.transpose()
assert type(result) == type(data)
# check we get a new object
assert result is not data
# If we ever _did_ support 2D, shape should be reversed
assert result.shape == data.shape[::-1]
# Check that we have a view, not a copy
result[0] = result[1]
assert data[0] == data[1]
def test_transpose_frame(self, data):
df = pd.DataFrame({"A": data[:4], "B": data[:4]}, index=["a", "b", "c", "d"])
result = df.T
expected = pd.DataFrame(
{
"a": type(data)._from_sequence([data[0]] * 2, dtype=data.dtype),
"b": type(data)._from_sequence([data[1]] * 2, dtype=data.dtype),
"c": type(data)._from_sequence([data[2]] * 2, dtype=data.dtype),
"d": type(data)._from_sequence([data[3]] * 2, dtype=data.dtype),
},
index=["A", "B"],
)
self.assert_frame_equal(result, expected)
self.assert_frame_equal(np.transpose(np.transpose(df)), df)
self.assert_frame_equal(np.transpose(np.transpose(df[["A"]])), df[["A"]])