forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_string.py
173 lines (124 loc) · 4.96 KB
/
test_string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import operator
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas.util.testing as tm
def test_none_to_nan():
a = pd.arrays.StringArray._from_sequence(["a", None, "b"])
assert a[1] is not None
assert np.isnan(a[1])
def test_setitem_validates():
a = pd.arrays.StringArray._from_sequence(["a", "b"])
with pytest.raises(ValueError, match="10"):
a[0] = 10
with pytest.raises(ValueError, match="strings"):
a[:] = np.array([1, 2])
@pytest.mark.parametrize(
"input, method",
[
(["a", "b", "c"], operator.methodcaller("capitalize")),
(["a", "b", "c"], operator.methodcaller("capitalize")),
(["a b", "a bc. de"], operator.methodcaller("capitalize")),
],
)
def test_string_methods(input, method):
a = pd.Series(input, dtype="string")
b = pd.Series(input, dtype="object")
result = method(a.str)
expected = method(b.str)
assert result.dtype.name == "string"
tm.assert_series_equal(result.astype(object), expected)
def test_astype_roundtrip():
s = pd.Series(pd.date_range("2000", periods=12))
s[0] = None
result = s.astype("string").astype("datetime64[ns]")
tm.assert_series_equal(result, s)
def test_add():
a = pd.Series(["a", "b", "c", None, None], dtype="string")
b = pd.Series(["x", "y", None, "z", None], dtype="string")
result = a + b
expected = pd.Series(["ax", "by", None, None, None], dtype="string")
tm.assert_series_equal(result, expected)
result = a.add(b)
tm.assert_series_equal(result, expected)
result = a.radd(b)
expected = pd.Series(["xa", "yb", None, None, None], dtype="string")
tm.assert_series_equal(result, expected)
result = a.add(b, fill_value="-")
expected = pd.Series(["ax", "by", "c-", "-z", None], dtype="string")
tm.assert_series_equal(result, expected)
def test_add_2d():
a = pd.array(["a", "b", "c"], dtype="string")
b = np.array([["a", "b", "c"]], dtype=object)
with pytest.raises(ValueError, match="3 != 1"):
a + b
s = pd.Series(a)
with pytest.raises(ValueError, match="3 != 1"):
s + b
def test_add_sequence():
a = pd.array(["a", "b", None, None], dtype="string")
other = ["x", None, "y", None]
result = a + other
expected = pd.array(["ax", None, None, None], dtype="string")
tm.assert_extension_array_equal(result, expected)
result = other + a
expected = pd.array(["xa", None, None, None], dtype="string")
tm.assert_extension_array_equal(result, expected)
def test_mul():
a = pd.array(["a", "b", None], dtype="string")
result = a * 2
expected = pd.array(["aa", "bb", None], dtype="string")
tm.assert_extension_array_equal(result, expected)
result = 2 * a
tm.assert_extension_array_equal(result, expected)
@pytest.mark.xfail(reason="GH-28527")
def test_add_strings():
array = pd.array(["a", "b", "c", "d"], dtype="string")
df = pd.DataFrame([["t", "u", "v", "w"]])
assert array.__add__(df) is NotImplemented
result = array + df
expected = pd.DataFrame([["at", "bu", "cv", "dw"]]).astype("string")
tm.assert_frame_equal(result, expected)
result = df + array
expected = pd.DataFrame([["ta", "ub", "vc", "wd"]]).astype("string")
tm.assert_frame_equal(result, expected)
@pytest.mark.xfail(reason="GH-28527")
def test_add_frame():
array = pd.array(["a", "b", np.nan, np.nan], dtype="string")
df = pd.DataFrame([["x", np.nan, "y", np.nan]])
assert array.__add__(df) is NotImplemented
result = array + df
expected = pd.DataFrame([["ax", np.nan, np.nan, np.nan]]).astype("string")
tm.assert_frame_equal(result, expected)
result = df + array
expected = pd.DataFrame([["xa", np.nan, np.nan, np.nan]]).astype("string")
tm.assert_frame_equal(result, expected)
def test_constructor_raises():
with pytest.raises(ValueError, match="sequence of strings"):
pd.arrays.StringArray(np.array(["a", "b"], dtype="S1"))
with pytest.raises(ValueError, match="sequence of strings"):
pd.arrays.StringArray(np.array([]))
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.xfail(reason="Not implemented StringArray.sum")
def test_reduce(skipna):
arr = pd.Series(["a", "b", "c"], dtype="string")
result = arr.sum(skipna=skipna)
assert result == "abc"
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.xfail(reason="Not implemented StringArray.sum")
def test_reduce_missing(skipna):
arr = pd.Series([None, "a", None, "b", "c", None], dtype="string")
result = arr.sum(skipna=skipna)
if skipna:
assert result == "abc"
else:
assert pd.isna(result)
@td.skip_if_no("pyarrow", min_version="0.15.0")
def test_arrow_array():
# protocol added in 0.15.0
import pyarrow as pa
data = pd.array(["a", "b", "c"], dtype="string")
arr = pa.array(data)
expected = pa.array(list(data), type=pa.string(), from_pandas=True)
assert arr.equals(expected)