{{ header }}
.. grid:: 1 2 2 2 :gutter: 4 .. grid-item-card:: Working with conda? :class-card: install-card :columns: 12 12 6 6 :padding: 3 pandas is part of the `Anaconda <https://docs.continuum.io/anaconda/>`__ distribution and can be installed with Anaconda or Miniconda: ++++++++++++++++++++++ .. code-block:: bash conda install pandas .. grid-item-card:: Prefer pip? :class-card: install-card :columns: 12 12 6 6 :padding: 3 pandas can be installed via pip from `PyPI <https://pypi.org/project/pandas>`__. ++++ .. code-block:: bash pip install pandas .. grid-item-card:: In-depth instructions? :class-card: install-card :columns: 12 :padding: 3 Installing a specific version? Installing from source? Check the advanced installation page. +++ .. button-ref:: install :ref-type: ref :click-parent: :color: secondary :expand: Learn more
When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. pandas will help you to explore, clean, and process your data. In pandas, a data table is called a :class:`DataFrame`.
There is no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a :class:`DataFrame` based on existing data in other columns is straightforward.
Change the structure of your data table in multiple ways. You can :func:`~pandas.melt` your data table from wide to long/tidy form or :func:`~pandas.pivot` from long to wide format. With aggregations built-in, a pivot table is created with a single command.
pandas has great support for time series and has an extensive set of tools for working with dates, times, and time-indexed data.
Data sets do not only contain numerical data. pandas provides a wide range of functions to clean textual data and extract useful information from it.
Are you familiar with other software for manipulating tabular data? Learn the pandas-equivalent operations compared to software you already know:
.. grid:: 1 2 2 2 :gutter: 4 :class-container: sd-text-center sd-d-inline-flex .. grid-item-card:: :img-top: ../_static/logo_r.svg :columns: 12 6 6 6 :class-card: comparison-card :shadow: md The `R programming language <https://www.r-project.org/>`__ provides the ``data.frame`` data structure and multiple packages, such as `tidyverse <https://www.tidyverse.org>`__ use and extend ``data.frame`` for convenient data handling functionalities similar to pandas. +++ .. button-ref:: compare_with_r :ref-type: ref :click-parent: :color: secondary :expand: Learn more .. grid-item-card:: :img-top: ../_static/logo_sql.svg :columns: 12 6 6 6 :class-card: comparison-card :shadow: md Already familiar to ``SELECT``, ``GROUP BY``, ``JOIN``, etc.? Most of these SQL manipulations do have equivalents in pandas. +++ .. button-ref:: compare_with_sql :ref-type: ref :click-parent: :color: secondary :expand: Learn more .. grid-item-card:: :img-top: ../_static/logo_stata.svg :columns: 12 6 6 6 :class-card: comparison-card :shadow: md The ``data set`` included in the `STATA <https://en.wikipedia.org/wiki/Stata>`__ statistical software suite corresponds to the pandas ``DataFrame``. Many of the operations known from STATA have an equivalent in pandas. +++ .. button-ref:: compare_with_stata :ref-type: ref :click-parent: :color: secondary :expand: Learn more .. grid-item-card:: :img-top: ../_static/spreadsheets/logo_excel.svg :columns: 12 6 6 6 :class-card: comparison-card :shadow: md Users of `Excel <https://en.wikipedia.org/wiki/Microsoft_Excel>`__ or other spreadsheet programs will find that many of the concepts are transferrable to pandas. +++ .. button-ref:: compare_with_spreadsheets :ref-type: ref :click-parent: :color: secondary :expand: Learn more .. grid-item-card:: :img-top: ../_static/logo_sas.svg :columns: 12 6 6 6 :class-card: comparison-card :shadow: md The `SAS <https://en.wikipedia.org/wiki/SAS_(software)>`__ statistical software suite also provides the ``data set`` corresponding to the pandas ``DataFrame``. Also SAS vectorized operations, filtering, string processing operations, and more have similar functions in pandas. +++ .. button-ref:: compare_with_sas :ref-type: ref :click-parent: :color: secondary :expand: Learn more
For a quick overview of pandas functionality, see :ref:`10 Minutes to pandas<10min>`.
You can also reference the pandas cheat sheet for a succinct guide for manipulating data with pandas.
The community produces a wide variety of tutorials available online. Some of the material is enlisted in the community contributed :ref:`communitytutorials`.
.. toctree:: :maxdepth: 2 :hidden: install overview intro_tutorials/index comparison/index tutorials