forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv0.20.0.txt
472 lines (289 loc) · 19.9 KB
/
v0.20.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
.. _whatsnew_0200:
v0.20.0 (????, 2016)
--------------------
This is a major release from 0.19 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- Building pandas for development now requires ``cython >= 0.23`` (:issue:`14831`)
- The ``.ix`` indexer has been deprecated, see :ref:`here <whatsnew_0200.api_breaking.deprecate_ix>`
Check the :ref:`API Changes <whatsnew_0200.api_breaking>` and :ref:`deprecations <whatsnew_0200.deprecations>` before updating.
.. contents:: What's new in v0.20.0
:local:
:backlinks: none
.. _whatsnew_0200.enhancements:
New features
~~~~~~~~~~~~
- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- ``.str.replace`` now accepts a callable, as replacement, which is passed to ``re.sub`` (:issue:`15055`)
.. _whatsnew_0200.enhancements.dataio_dtype:
``dtype`` keyword for data IO
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``dtype`` keyword argument in the :func:`read_csv` function for specifying the types of parsed columns is now supported with the ``'python'`` engine (:issue:`14295`). See the :ref:`io docs <io.dtypes>` for more information.
.. ipython:: python
data = "a,b\n1,2\n3,4"
pd.read_csv(StringIO(data), engine='python').dtypes
pd.read_csv(StringIO(data), engine='python', dtype={'a':'float64', 'b':'object'}).dtypes
The ``dtype`` keyword argument is also now supported in the :func:`read_fwf` function for parsing
fixed-width text files, and :func:`read_excel` for parsing Excel files.
.. ipython:: python
data = "a b\n1 2\n3 4"
pd.read_fwf(StringIO(data)).dtypes
pd.read_fwf(StringIO(data), dtype={'a':'float64', 'b':'object'}).dtypes
.. _whatsnew_0200.enhancements.groupby_access:
Groupby Enhancements
^^^^^^^^^^^^^^^^^^^^
Strings passed to ``DataFrame.groupby()`` as the ``by`` parameter may now reference either column names or index level names (:issue:`5677`)
.. ipython:: python
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
'B': np.arange(8)},
index=index)
df
df.groupby(['second', 'A']).sum()
.. _whatsnew_0200.enhancements.compressed_urls:
Better support for compressed URLs in ``read_csv``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The compression code was refactored (:issue:`12688`). As a result, reading
dataframes from URLs in :func:`read_csv` or :func:`read_table` now supports
additional compression methods: ``xz``, ``bz2``, and ``zip`` (:issue:`14570`).
Previously, only ``gzip`` compression was supported. By default, compression of
URLs and paths are now both inferred using their file extensions. Additionally,
support for bz2 compression in the python 2 c-engine improved (:issue:`14874`).
.. ipython:: python
url = 'https://github.com/{repo}/raw/{branch}/{path}'.format(
repo = 'pandas-dev/pandas',
branch = 'master',
path = 'pandas/io/tests/parser/data/salaries.csv.bz2',
)
df = pd.read_table(url, compression='infer') # default, infer compression
df = pd.read_table(url, compression='bz2') # explicitly specify compression
df.head(2)
.. _whatsnew_0200.enhancements.uint64_support:
Pandas has significantly improved support for operations involving unsigned,
or purely non-negative, integers. Previously, handling these integers would
result in improper rounding or data-type casting, leading to incorrect results.
Notably, a new numerical index, ``UInt64Index``, has been created (:issue:`14937`)
.. ipython:: python
idx = pd.UInt64Index([1, 2, 3])
df = pd.DataFrame({'A': ['a', 'b', 'c']}, index=idx)
df.index
- Bug in converting object elements of array-like objects to unsigned 64-bit integers (:issue:`4471`, :issue:`14982`)
- Bug in ``Series.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14721`)
- Bug in ``DataFrame`` construction in which unsigned 64-bit integer elements were being converted to objects (:issue:`14881`)
- Bug in ``pd.read_csv()`` in which unsigned 64-bit integer elements were being improperly converted to the wrong data types (:issue:`14983`)
- Bug in ``pd.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14915`)
- Bug in ``pd.value_counts()`` in which unsigned 64-bit integers were being erroneously truncated in the output (:issue:`14934`)
.. _whatsnew_0200.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- ``Series.sort_index`` accepts parameters ``kind`` and ``na_position`` (:issue:`13589`, :issue:`14444`)
- ``DataFrame`` has gained a ``nunique()`` method to count the distinct values over an axis (:issue:`14336`).
- ``DataFrame.groupby()`` has gained a ``.nunique()`` method to count the distinct values for all columns within each group (:issue:`14336`, :issue:`15197`).
- ``pd.read_excel`` now preserves sheet order when using ``sheetname=None`` (:issue:`9930`)
- Multiple offset aliases with decimal points are now supported (e.g. '0.5min' is parsed as '30s') (:issue:`8419`)
- ``pd.read_gbq`` method now allows query configuration preferences (:issue:`14742`)
- New ``UnsortedIndexError`` (subclass of ``KeyError``) raised when indexing/slicing into an
unsorted MultiIndex (:issue:`11897`). This allows differentiation between errors due to lack
of sorting or an incorrect key. See :ref:`here <advanced.unsorted>`
- ``pd.cut`` and ``pd.qcut`` now support datetime64 and timedelta64 dtypes (:issue:`14714`, :issue:`14798`)
- ``pd.qcut`` has gained the ``duplicates='raise'|'drop'`` option to control whether to raise on duplicated edges (:issue:`7751`)
- ``Series`` provides a ``to_excel`` method to output Excel files (:issue:`8825`)
- The ``usecols`` argument in ``pd.read_csv`` now accepts a callable function as a value (:issue:`14154`)
- The ``skiprows`` argument in ``pd.read_csv`` now accepts a callable function as a value (:issue:`10882`)
- ``pd.DataFrame.plot`` now prints a title above each subplot if ``suplots=True`` and ``title`` is a list of strings (:issue:`14753`)
- ``pd.Series.interpolate`` now supports timedelta as an index type with ``method='time'`` (:issue:`6424`)
- ``Timedelta.isoformat`` method added for formatting Timedeltas as an `ISO 8601 duration`_. See the :ref:`Timedelta docs <timedeltas.isoformat>` (:issue:`15136`)
- ``pandas.io.json.json_normalize()`` gained the option ``errors='ignore'|'raise'``; the default is ``errors='raise'`` which is backward compatible. (:issue:`14583`)
- ``.select_dtypes()`` now allows the string 'datetimetz' to generically select datetimes with tz (:issue:`14910`)
- ``pd.merge_asof()`` gained the option ``direction='backward'|'forward'|'nearest'`` (:issue:`14887`)
- ``Series/DataFrame.asfreq()`` have gained a ``fill_value`` parameter, to fill missing values (:issue:`3715`).
- ``Series/DataFrame.resample.asfreq`` have gained a ``fill_value`` parameter, to fill missing values during resampling (:issue:`3715`).
.. _ISO 8601 duration: https://en.wikipedia.org/wiki/ISO_8601#Durations
.. _whatsnew_0200.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0200.api_breaking.deprecate_ix:
Deprecate .ix
^^^^^^^^^^^^^
The ``.ix`` indexer is deprecated, in favor of the more strict ``.iloc`` and ``.loc`` indexers. ``.ix`` offers a lot of magic on the inference of what the user wants to do. To wit, ``.ix`` can decide to index *positionally* OR via *labels*, depending on the data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation are :ref:`here <indexing>`. (:issue:`14218`)
The recommended methods of indexing are:
- ``.loc`` if you want to *label* index
- ``.iloc`` if you want to *positionally* index.
Using ``.ix`` will now show a ``DeprecationWarning`` with a link to some examples of how to convert code :ref:`here <indexing.deprecate_ix>`.
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3],
'B': [4, 5, 6]},
index=list('abc'))
df
Previous Behavior, where you wish to get the 0th and the 2nd elements from the index in the 'A' column.
.. code-block:: ipython
In [3]: df.ix[[0, 2], 'A']
Out[3]:
a 1
c 3
Name: A, dtype: int64
Using ``.loc``. Here we will select the appropriate indexes from the index, then use *label* indexing.
.. ipython:: python
df.loc[df.index[[0, 2]], 'A']
Using ``.iloc``. Here we will get the location of the 'A' column, then use *positional* indexing to select things.
.. ipython:: python
df.iloc[[0, 2], df.columns.get_loc('A')]
.. _whatsnew_0200.api_breaking.index_map:
Map on Index types now return other Index types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
.. ipython:: python
idx = Index([1, 2])
idx
mi = MultiIndex.from_tuples([(1, 2), (2, 4)])
mi
Previous Behavior:
.. code-block:: ipython
In [5]: idx.map(lambda x: x * 2)
Out[5]: array([2, 4])
In [6]: idx.map(lambda x: (x, x * 2))
Out[6]: array([(1, 2), (2, 4)], dtype=object)
In [7]: mi.map(lambda x: x)
Out[7]: array([(1, 2), (2, 4)], dtype=object)
In [8]: mi.map(lambda x: x[0])
Out[8]: array([1, 2])
New Behavior:
.. ipython:: python
idx.map(lambda x: x * 2)
idx.map(lambda x: (x, x * 2))
mi.map(lambda x: x)
mi.map(lambda x: x[0])
- ``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
.. ipython:: python
s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))
s
Previous Behavior:
.. code-block:: ipython
In [9]: s.map(lambda x: x.hour)
Out[9]:
0 0
1 1
2 2
dtype: int32
New Behavior:
.. ipython:: python
s.map(lambda x: x.hour)
.. _whatsnew_0200.api_breaking.s3:
S3 File Handling
^^^^^^^^^^^^^^^^
pandas now uses `s3fs <http://s3fs.readthedocs.io/>`_ for handling S3 connections. This shouldn't break
any code. However, since s3fs is not a required dependency, you will need to install it separately, like ``boto``
in prior versions of pandas. (:issue:`11915`).
.. _whatsnew_0200.api_breaking.partial_string_indexing:
Partial String Indexing Changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:ref:`DatetimeIndex Partial String Indexing <timeseries.partialindexing>` now works as exact match, provided that string resolution coincides with index resolution, including a case when both are seconds (:issue:`14826`). See :ref:`Slice vs. Exact Match <timeseries.slice_vs_exact_match>` for details.
.. ipython:: python
df = DataFrame({'a': [1, 2, 3]}, DatetimeIndex(['2011-12-31 23:59:59',
'2012-01-01 00:00:00',
'2012-01-01 00:00:01']))
Previous Behavior:
.. code-block:: ipython
In [4]: df['2011-12-31 23:59:59']
Out[4]:
a
2011-12-31 23:59:59 1
In [5]: df['a']['2011-12-31 23:59:59']
Out[5]:
2011-12-31 23:59:59 1
Name: a, dtype: int64
New Behavior:
.. code-block:: ipython
In [4]: df['2011-12-31 23:59:59']
KeyError: '2011-12-31 23:59:59'
In [5]: df['a']['2011-12-31 23:59:59']
Out[5]: 1
.. _whatsnew_0200.api:
Other API Changes
^^^^^^^^^^^^^^^^^
- ``CParserError`` has been renamed to ``ParserError`` in ``pd.read_csv`` and will be removed in the future (:issue:`12665`)
- ``SparseArray.cumsum()`` and ``SparseSeries.cumsum()`` will now always return ``SparseArray`` and ``SparseSeries`` respectively (:issue:`12855`)
- ``DataFrame.applymap()`` with an empty ``DataFrame`` will return a copy of the empty ``DataFrame`` instead of a ``Series`` (:issue:`8222`)
- ``.loc`` has compat with ``.ix`` for accepting iterators, and NamedTuples (:issue:`15120`)
- ``pd.read_csv()`` will now issue a ``ParserWarning`` whenever there are conflicting values provided by the ``dialect`` parameter and the user (:issue:`14898`)
- ``pd.read_csv()`` will now raise a ``ValueError`` for the C engine if the quote character is larger than than one byte (:issue:`11592`)
- ``inplace`` arguments now require a boolean value, else a ``ValueError`` is thrown (:issue:`14189`)
- ``pandas.api.types.is_datetime64_ns_dtype`` will now report ``True`` on a tz-aware dtype, similar to ``pandas.api.types.is_datetime64_any_dtype``
.. _whatsnew_0200.deprecations:
Deprecations
^^^^^^^^^^^^
- ``SparseArray.to_dense()`` has deprecated the ``fill`` parameter, as that parameter was not being respected (:issue:`14647`)
- ``SparseSeries.to_dense()`` has deprecated the ``sparse_only`` parameter (:issue:`14647`)
- ``Series.repeat()`` has deprecated the ``reps`` parameter in favor of ``repeats`` (:issue:`12662`)
- ``Index.repeat()`` and ``MultiIndex.repeat()`` have deprecated the ``n`` parameter in favor of ``repeats`` (:issue:`12662`)
- ``Categorical.searchsorted()`` and ``Series.searchsorted()`` have deprecated the ``v`` parameter in favor of ``value`` (:issue:`12662`)
- ``TimedeltaIndex.searchsorted()``, ``DatetimeIndex.searchsorted()``, and ``PeriodIndex.searchsorted()`` have deprecated the ``key`` parameter in favor of ``value`` (:issue:`12662`)
- ``DataFrame.astype()`` has deprecated the ``raise_on_error`` parameter in favor of ``errors`` (:issue:`14878`)
- ``Series.sortlevel`` and ``DataFrame.sortlevel`` have been deprecated in favor of ``Series.sort_index`` and ``DataFrame.sort_index`` (:issue:`15099`)
.. _whatsnew_0200.prior_deprecations:
Removal of prior version deprecations/changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The ``pandas.rpy`` module is removed. Similar functionality can be accessed
through the `rpy2 <https://rpy2.readthedocs.io/>`__ project.
See the :ref:`R interfacing docs <rpy>` for more details.
- The ``pandas.io.ga`` module with a ``google-analytics`` interface is removed (:issue:`11308`).
Similar functionality can be found in the `Google2Pandas <https://github.com/panalysis/Google2Pandas>`__ package.
- ``pd.to_datetime`` and ``pd.to_timedelta`` have dropped the ``coerce`` parameter in favor of ``errors`` (:issue:`13602`)
.. _whatsnew_0200.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of ``pd.wide_to_long()`` (:issue:`14779`)
- Increased performance of ``pd.factorize()`` by releasing the GIL with ``object`` dtype when inferred as strings (:issue:`14859`)
- Improved performance of timeseries plotting with an irregular DatetimeIndex
(or with ``compat_x=True``) (:issue:`15073`).
- Improved performance of ``groupby().cummin()`` and ``groupby().cummax()`` (:issue:`15048`)
- When reading buffer object in ``read_sas()`` method without specified format, filepath string is inferred rather than buffer object.
.. _whatsnew_0200.bug_fixes:
Bug Fixes
~~~~~~~~~
- Bug in ``Index`` power operations with reversed operands (:issue:`14973`)
- Bug in ``TimedeltaIndex`` addition where overflow was being allowed without error (:issue:`14816`)
- Bug in ``astype()`` where ``inf`` values were incorrectly converted to integers. Now raises error now with ``astype()`` for Series and DataFrames (:issue:`14265`)
- Bug in ``DataFrame(..).apply(to_numeric)`` when values are of type decimal.Decimal. (:issue:`14827`)
- Bug in ``describe()`` when passing a numpy array which does not contain the median to the ``percentiles`` keyword argument (:issue:`14908`)
- Bug in ``DataFrame.sort_values()`` when sorting by multiple columns where one column is of type ``int64`` and contains ``NaT`` (:issue:`14922`)
- Bug in ``DataFrame.reindex()`` in which ``method`` was ignored when passing ``columns`` (:issue:`14992`)
- Bug in ``pd.to_numeric()`` in which float and unsigned integer elements were being improperly casted (:issue:`14941`, :issue:`15005`)
- Bug in ``pd.read_csv()`` in which the ``dialect`` parameter was not being verified before processing (:issue:`14898`)
- Bug in ``pd.read_fwf`` where the skiprows parameter was not being respected during column width inference (:issue:`11256`)
- Bug in ``pd.read_csv()`` in which missing data was being improperly handled with ``usecols`` (:issue:`6710`)
- Bug in ``pd.read_csv()`` in which a file containing a row with many columns followed by rows with fewer columns would cause a crash (:issue:`14125`)
- Bug in ``pd.tools.hashing.hash_pandas_object()`` in which hashing of categoricals depended on the ordering of categories, instead of just their values. (:issue:`15143`)
- Bug in ``DataFrame.loc`` with indexing a ``MultiIndex`` with a ``Series`` indexer (:issue:`14730`)
- Bug in ``pd.read_msgpack()`` in which ``Series`` categoricals were being improperly processed (:issue:`14901`)
- Bug in ``Series.ffill()`` with mixed dtypes containing tz-aware datetimes. (:issue:`14956`)
- Bug in ``Series`` construction with a datetimetz (:issue:`14928`)
- Bug in compat for passing long integers to ``Timestamp.replace`` (:issue:`15030`)
- Bug in ``.loc`` that would not return the correct dtype for scalar access for a DataFrame (:issue:`11617`)
- Bug in ``GroupBy.get_group()`` failing with a categorical grouper (:issue:`15155`)
- Bug in ``.groupby(...).rolling(...)`` when ``on`` is specified and using a ``DatetimeIndex`` (:issue:`15130`)
- Bug in ``Series.iloc`` where a ``Categorical`` object for list-like indexes input was returned, where a ``Series`` was expected. (:issue:`14580`)
- Bug in groupby operations with timedelta64 when passing ``numeric_only=False`` (:issue:`5724`)
- Bug in ``DataFrame.to_html`` with ``index=False`` and ``max_rows`` raising in ``IndexError`` (:issue:`14998`)
- Bug in ``Categorical.searchsorted()`` where alphabetical instead of the provided categorical order was used (:issue:`14522`)
- Bug in ``resample``, where a non-string ```loffset`` argument would not be applied when resampling a timeseries (:issue:`13218`)
- Require at least 0.23 version of cython to avoid problems with character encodings (:issue:`14699`)
- Bug in ``pd.pivot_table()`` where no error was raised when values argument was not in the columns (:issue:`14938`)
- Bug in ``.to_json()`` where ``lines=True`` and contents (keys or values) contain escaped characters (:issue:`15096`)
- Bug in ``.rolling/expanding()`` functions where ``count()`` was not counting ``np.Inf``, nor handling ``object`` dtypes (:issue:`12541`)
- Bug in ``DataFrame.resample().median()`` if duplicate column names are present (:issue:`14233`)
- Bug in ``DataFrame.groupby().describe()`` when grouping on ``Index`` containing tuples (:issue:`14848`)
- Bug in creating a ``MultiIndex`` with tuples and not passing a list of names; this will now raise ``ValueError`` (:issue:`15110`)
- Bug in catching an overflow in ``Timestamp`` + ``Timedelta/Offset`` operations (:issue:`15126`)
- Bug in the HTML display with with a ``MultiIndex`` and truncation (:issue:`14882`)
- Bug in ``pd.merge_asof()`` where ``left_index``/``right_index`` together caused a failure when ``tolerance`` was specified (:issue:`15135`)
- Bug in ``Series`` constructor when both ``copy=True`` and ``dtype`` arguments are provided (:issue:`15125`)
- Bug in ``pd.read_csv()`` for the C engine where ``usecols`` were being indexed incorrectly with ``parse_dates`` (:issue:`14792`)
- Incorrect dtyped ``Series`` was returned by comparison methods (e.g., ``lt``, ``gt``, ...) against a constant for an empty ``DataFrame`` (:issue:`15077`)
- Bug in ``Series.dt.round`` inconsistent behaviour on NAT's with different arguments (:issue:`14940`)
- Bug in ``.read_json()`` for Python 2 where ``lines=True`` and contents contain non-ascii unicode characters (:issue:`15132`)
- Bug in ``pd.read_csv()`` with ``float_precision='round_trip'`` which caused a segfault when a text entry is parsed (:issue:`15140`)
- Bug in ``DataFrame.boxplot`` where ``fontsize`` was not applied to the tick labels on both axes (:issue:`15108`)