forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_datetimelike.py
1275 lines (1081 loc) · 45.2 KB
/
test_datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from datetime import datetime, timedelta, date, time
import nose
from pandas.compat import lrange, zip
import numpy as np
from pandas import Index, Series, DataFrame
from pandas.tseries.index import date_range, bdate_range
from pandas.tseries.offsets import DateOffset
from pandas.tseries.period import period_range, Period, PeriodIndex
from pandas.tseries.resample import DatetimeIndex
from pandas.util.testing import assert_series_equal, ensure_clean, slow
import pandas.util.testing as tm
from pandas.tests.plotting.common import (TestPlotBase,
_skip_if_no_scipy_gaussian_kde)
""" Test cases for time series specific (freq conversion, etc) """
@tm.mplskip
class TestTSPlot(TestPlotBase):
def setUp(self):
TestPlotBase.setUp(self)
freq = ['S', 'T', 'H', 'D', 'W', 'M', 'Q', 'A']
idx = [period_range('12/31/1999', freq=x, periods=100) for x in freq]
self.period_ser = [Series(np.random.randn(len(x)), x) for x in idx]
self.period_df = [DataFrame(np.random.randn(len(x), 3), index=x,
columns=['A', 'B', 'C'])
for x in idx]
freq = ['S', 'T', 'H', 'D', 'W', 'M', 'Q-DEC', 'A', '1B30Min']
idx = [date_range('12/31/1999', freq=x, periods=100) for x in freq]
self.datetime_ser = [Series(np.random.randn(len(x)), x) for x in idx]
self.datetime_df = [DataFrame(np.random.randn(len(x), 3), index=x,
columns=['A', 'B', 'C'])
for x in idx]
def tearDown(self):
tm.close()
@slow
def test_ts_plot_with_tz(self):
# GH2877
index = date_range('1/1/2011', periods=2, freq='H',
tz='Europe/Brussels')
ts = Series([188.5, 328.25], index=index)
_check_plot_works(ts.plot)
def test_fontsize_set_correctly(self):
# For issue #8765
import matplotlib.pyplot as plt # noqa
df = DataFrame(np.random.randn(10, 9), index=range(10))
ax = df.plot(fontsize=2)
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
self.assertEqual(label.get_fontsize(), 2)
@slow
def test_frame_inferred(self):
# inferred freq
import matplotlib.pyplot as plt # noqa
idx = date_range('1/1/1987', freq='MS', periods=100)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
# axes freq
idx = idx[0:40].union(idx[45:99])
df2 = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df2.plot)
# N > 1
idx = date_range('2008-1-1 00:15:00', freq='15T', periods=10)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
def test_is_error_nozeroindex(self):
# GH11858
i = np.array([1, 2, 3])
a = DataFrame(i, index=i)
_check_plot_works(a.plot, xerr=a)
_check_plot_works(a.plot, yerr=a)
def test_nonnumeric_exclude(self):
import matplotlib.pyplot as plt
idx = date_range('1/1/1987', freq='A', periods=3)
df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}, idx)
ax = df.plot() # it works
self.assertEqual(len(ax.get_lines()), 1) # B was plotted
plt.close(plt.gcf())
self.assertRaises(TypeError, df['A'].plot)
@slow
def test_tsplot(self):
from pandas.tseries.plotting import tsplot
import matplotlib.pyplot as plt
ax = plt.gca()
ts = tm.makeTimeSeries()
f = lambda *args, **kwds: tsplot(s, plt.Axes.plot, *args, **kwds)
for s in self.period_ser:
_check_plot_works(f, s.index.freq, ax=ax, series=s)
for s in self.datetime_ser:
_check_plot_works(f, s.index.freq.rule_code, ax=ax, series=s)
for s in self.period_ser:
_check_plot_works(s.plot, ax=ax)
for s in self.datetime_ser:
_check_plot_works(s.plot, ax=ax)
ax = ts.plot(style='k')
self.assertEqual((0., 0., 0.), ax.get_lines()[0].get_color())
def test_both_style_and_color(self):
import matplotlib.pyplot as plt # noqa
ts = tm.makeTimeSeries()
self.assertRaises(ValueError, ts.plot, style='b-', color='#000099')
s = ts.reset_index(drop=True)
self.assertRaises(ValueError, s.plot, style='b-', color='#000099')
@slow
def test_high_freq(self):
freaks = ['ms', 'us']
for freq in freaks:
rng = date_range('1/1/2012', periods=100000, freq=freq)
ser = Series(np.random.randn(len(rng)), rng)
_check_plot_works(ser.plot)
def test_get_datevalue(self):
from pandas.tseries.converter import get_datevalue
self.assertIsNone(get_datevalue(None, 'D'))
self.assertEqual(get_datevalue(1987, 'A'), 1987)
self.assertEqual(get_datevalue(Period(1987, 'A'), 'M'),
Period('1987-12', 'M').ordinal)
self.assertEqual(get_datevalue('1/1/1987', 'D'),
Period('1987-1-1', 'D').ordinal)
@slow
def test_ts_plot_format_coord(self):
def check_format_of_first_point(ax, expected_string):
first_line = ax.get_lines()[0]
first_x = first_line.get_xdata()[0].ordinal
first_y = first_line.get_ydata()[0]
try:
self.assertEqual(expected_string,
ax.format_coord(first_x, first_y))
except (ValueError):
raise nose.SkipTest("skipping test because issue forming "
"test comparison GH7664")
annual = Series(1, index=date_range('2014-01-01', periods=3,
freq='A-DEC'))
check_format_of_first_point(annual.plot(), 't = 2014 y = 1.000000')
# note this is added to the annual plot already in existence, and
# changes its freq field
daily = Series(1, index=date_range('2014-01-01', periods=3, freq='D'))
check_format_of_first_point(daily.plot(),
't = 2014-01-01 y = 1.000000')
tm.close()
# tsplot
import matplotlib.pyplot as plt
from pandas.tseries.plotting import tsplot
tsplot(annual, plt.Axes.plot)
check_format_of_first_point(plt.gca(), 't = 2014 y = 1.000000')
tsplot(daily, plt.Axes.plot)
check_format_of_first_point(plt.gca(), 't = 2014-01-01 y = 1.000000')
@slow
def test_line_plot_period_series(self):
for s in self.period_ser:
_check_plot_works(s.plot, s.index.freq)
@slow
def test_line_plot_datetime_series(self):
for s in self.datetime_ser:
_check_plot_works(s.plot, s.index.freq.rule_code)
@slow
def test_line_plot_period_frame(self):
for df in self.period_df:
_check_plot_works(df.plot, df.index.freq)
@slow
def test_line_plot_datetime_frame(self):
for df in self.datetime_df:
freq = df.index.to_period(df.index.freq.rule_code).freq
_check_plot_works(df.plot, freq)
@slow
def test_line_plot_inferred_freq(self):
for ser in self.datetime_ser:
ser = Series(ser.values, Index(np.asarray(ser.index)))
_check_plot_works(ser.plot, ser.index.inferred_freq)
ser = ser[[0, 3, 5, 6]]
_check_plot_works(ser.plot)
def test_fake_inferred_business(self):
import matplotlib.pyplot as plt
fig = plt.gcf()
plt.clf()
fig.add_subplot(111)
rng = date_range('2001-1-1', '2001-1-10')
ts = Series(lrange(len(rng)), rng)
ts = ts[:3].append(ts[5:])
ax = ts.plot()
self.assertFalse(hasattr(ax, 'freq'))
@slow
def test_plot_offset_freq(self):
ser = tm.makeTimeSeries()
_check_plot_works(ser.plot)
dr = date_range(ser.index[0], freq='BQS', periods=10)
ser = Series(np.random.randn(len(dr)), dr)
_check_plot_works(ser.plot)
@slow
def test_plot_multiple_inferred_freq(self):
dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(
2000, 1, 11)])
ser = Series(np.random.randn(len(dr)), dr)
_check_plot_works(ser.plot)
@slow
def test_uhf(self):
import pandas.tseries.converter as conv
import matplotlib.pyplot as plt
fig = plt.gcf()
plt.clf()
fig.add_subplot(111)
idx = date_range('2012-6-22 21:59:51.960928', freq='L', periods=500)
df = DataFrame(np.random.randn(len(idx), 2), idx)
ax = df.plot()
axis = ax.get_xaxis()
tlocs = axis.get_ticklocs()
tlabels = axis.get_ticklabels()
for loc, label in zip(tlocs, tlabels):
xp = conv._from_ordinal(loc).strftime('%H:%M:%S.%f')
rs = str(label.get_text())
if len(rs):
self.assertEqual(xp, rs)
@slow
def test_irreg_hf(self):
import matplotlib.pyplot as plt
fig = plt.gcf()
plt.clf()
fig.add_subplot(111)
idx = date_range('2012-6-22 21:59:51', freq='S', periods=100)
df = DataFrame(np.random.randn(len(idx), 2), idx)
irreg = df.ix[[0, 1, 3, 4]]
ax = irreg.plot()
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
sec = 1. / 24 / 60 / 60
self.assertTrue((np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all(
))
plt.clf()
fig.add_subplot(111)
df2 = df.copy()
df2.index = df.index.asobject
ax = df2.plot()
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
self.assertTrue((np.fabs(diffs[1:] - sec) < 1e-8).all())
def test_irregular_datetime64_repr_bug(self):
import matplotlib.pyplot as plt
ser = tm.makeTimeSeries()
ser = ser[[0, 1, 2, 7]]
fig = plt.gcf()
plt.clf()
ax = fig.add_subplot(211)
ret = ser.plot()
self.assertIsNotNone(ret)
for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
self.assertEqual(rs, xp)
def test_business_freq(self):
import matplotlib.pyplot as plt # noqa
bts = tm.makePeriodSeries()
ax = bts.plot()
self.assertEqual(ax.get_lines()[0].get_xydata()[0, 0],
bts.index[0].ordinal)
idx = ax.get_lines()[0].get_xdata()
self.assertEqual(PeriodIndex(data=idx).freqstr, 'B')
@slow
def test_business_freq_convert(self):
n = tm.N
tm.N = 300
bts = tm.makeTimeSeries().asfreq('BM')
tm.N = n
ts = bts.to_period('M')
ax = bts.plot()
self.assertEqual(ax.get_lines()[0].get_xydata()[0, 0],
ts.index[0].ordinal)
idx = ax.get_lines()[0].get_xdata()
self.assertEqual(PeriodIndex(data=idx).freqstr, 'M')
def test_nonzero_base(self):
# GH2571
idx = (date_range('2012-12-20', periods=24, freq='H') + timedelta(
minutes=30))
df = DataFrame(np.arange(24), index=idx)
ax = df.plot()
rs = ax.get_lines()[0].get_xdata()
self.assertFalse(Index(rs).is_normalized)
def test_dataframe(self):
bts = DataFrame({'a': tm.makeTimeSeries()})
ax = bts.plot()
idx = ax.get_lines()[0].get_xdata()
tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))
@slow
def test_axis_limits(self):
import matplotlib.pyplot as plt
def _test(ax):
xlim = ax.get_xlim()
ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
ax.get_figure().canvas.draw()
result = ax.get_xlim()
self.assertEqual(result[0], xlim[0] - 5)
self.assertEqual(result[1], xlim[1] + 10)
# string
expected = (Period('1/1/2000', ax.freq),
Period('4/1/2000', ax.freq))
ax.set_xlim('1/1/2000', '4/1/2000')
ax.get_figure().canvas.draw()
result = ax.get_xlim()
self.assertEqual(int(result[0]), expected[0].ordinal)
self.assertEqual(int(result[1]), expected[1].ordinal)
# datetim
expected = (Period('1/1/2000', ax.freq),
Period('4/1/2000', ax.freq))
ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
ax.get_figure().canvas.draw()
result = ax.get_xlim()
self.assertEqual(int(result[0]), expected[0].ordinal)
self.assertEqual(int(result[1]), expected[1].ordinal)
fig = ax.get_figure()
plt.close(fig)
ser = tm.makeTimeSeries()
ax = ser.plot()
_test(ax)
df = DataFrame({'a': ser, 'b': ser + 1})
ax = df.plot()
_test(ax)
df = DataFrame({'a': ser, 'b': ser + 1})
axes = df.plot(subplots=True)
for ax in axes:
_test(ax)
def test_get_finder(self):
import pandas.tseries.converter as conv
self.assertEqual(conv.get_finder('B'), conv._daily_finder)
self.assertEqual(conv.get_finder('D'), conv._daily_finder)
self.assertEqual(conv.get_finder('M'), conv._monthly_finder)
self.assertEqual(conv.get_finder('Q'), conv._quarterly_finder)
self.assertEqual(conv.get_finder('A'), conv._annual_finder)
self.assertEqual(conv.get_finder('W'), conv._daily_finder)
@slow
def test_finder_daily(self):
import matplotlib.pyplot as plt
xp = Period('1999-1-1', freq='B').ordinal
day_lst = [10, 40, 252, 400, 950, 2750, 10000]
for n in day_lst:
rng = bdate_range('1999-1-1', periods=n)
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(xp, rs)
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(xp, rs)
plt.close(ax.get_figure())
@slow
def test_finder_quarterly(self):
import matplotlib.pyplot as plt
xp = Period('1988Q1').ordinal
yrs = [3.5, 11]
for n in yrs:
rng = period_range('1987Q2', periods=int(n * 4), freq='Q')
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(rs, xp)
(vmin, vmax) = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(xp, rs)
plt.close(ax.get_figure())
@slow
def test_finder_monthly(self):
import matplotlib.pyplot as plt
xp = Period('Jan 1988').ordinal
yrs = [1.15, 2.5, 4, 11]
for n in yrs:
rng = period_range('1987Q2', periods=int(n * 12), freq='M')
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(rs, xp)
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(xp, rs)
plt.close(ax.get_figure())
def test_finder_monthly_long(self):
rng = period_range('1988Q1', periods=24 * 12, freq='M')
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period('1989Q1', 'M').ordinal
self.assertEqual(rs, xp)
@slow
def test_finder_annual(self):
import matplotlib.pyplot as plt
xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
for i, nyears in enumerate([5, 10, 19, 49, 99, 199, 599, 1001]):
rng = period_range('1987', periods=nyears, freq='A')
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
self.assertEqual(rs, Period(xp[i], freq='A').ordinal)
plt.close(ax.get_figure())
@slow
def test_finder_minutely(self):
nminutes = 50 * 24 * 60
rng = date_range('1/1/1999', freq='Min', periods=nminutes)
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period('1/1/1999', freq='Min').ordinal
self.assertEqual(rs, xp)
def test_finder_hourly(self):
nhours = 23
rng = date_range('1/1/1999', freq='H', periods=nhours)
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period('1/1/1999', freq='H').ordinal
self.assertEqual(rs, xp)
@slow
def test_gaps(self):
import matplotlib.pyplot as plt
ts = tm.makeTimeSeries()
ts[5:25] = np.nan
ax = ts.plot()
lines = ax.get_lines()
tm._skip_if_mpl_1_5()
self.assertEqual(len(lines), 1)
l = lines[0]
data = l.get_xydata()
tm.assertIsInstance(data, np.ma.core.MaskedArray)
mask = data.mask
self.assertTrue(mask[5:25, 1].all())
plt.close(ax.get_figure())
# irregular
ts = tm.makeTimeSeries()
ts = ts[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
ts[2:5] = np.nan
ax = ts.plot()
lines = ax.get_lines()
self.assertEqual(len(lines), 1)
l = lines[0]
data = l.get_xydata()
tm.assertIsInstance(data, np.ma.core.MaskedArray)
mask = data.mask
self.assertTrue(mask[2:5, 1].all())
plt.close(ax.get_figure())
# non-ts
idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
ser = Series(np.random.randn(len(idx)), idx)
ser[2:5] = np.nan
ax = ser.plot()
lines = ax.get_lines()
self.assertEqual(len(lines), 1)
l = lines[0]
data = l.get_xydata()
tm.assertIsInstance(data, np.ma.core.MaskedArray)
mask = data.mask
self.assertTrue(mask[2:5, 1].all())
@slow
def test_gap_upsample(self):
low = tm.makeTimeSeries()
low[5:25] = np.nan
ax = low.plot()
idxh = date_range(low.index[0], low.index[-1], freq='12h')
s = Series(np.random.randn(len(idxh)), idxh)
s.plot(secondary_y=True)
lines = ax.get_lines()
self.assertEqual(len(lines), 1)
self.assertEqual(len(ax.right_ax.get_lines()), 1)
l = lines[0]
data = l.get_xydata()
tm._skip_if_mpl_1_5()
tm.assertIsInstance(data, np.ma.core.MaskedArray)
mask = data.mask
self.assertTrue(mask[5:25, 1].all())
@slow
def test_secondary_y(self):
import matplotlib.pyplot as plt
ser = Series(np.random.randn(10))
ser2 = Series(np.random.randn(10))
ax = ser.plot(secondary_y=True)
self.assertTrue(hasattr(ax, 'left_ax'))
self.assertFalse(hasattr(ax, 'right_ax'))
fig = ax.get_figure()
axes = fig.get_axes()
l = ax.get_lines()[0]
xp = Series(l.get_ydata(), l.get_xdata())
assert_series_equal(ser, xp)
self.assertEqual(ax.get_yaxis().get_ticks_position(), 'right')
self.assertFalse(axes[0].get_yaxis().get_visible())
plt.close(fig)
ax2 = ser2.plot()
self.assertEqual(ax2.get_yaxis().get_ticks_position(), 'default')
plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
self.assertTrue(ax.get_yaxis().get_visible())
self.assertFalse(hasattr(ax, 'left_ax'))
self.assertTrue(hasattr(ax, 'right_ax'))
self.assertTrue(hasattr(ax2, 'left_ax'))
self.assertFalse(hasattr(ax2, 'right_ax'))
@slow
def test_secondary_y_ts(self):
import matplotlib.pyplot as plt
idx = date_range('1/1/2000', periods=10)
ser = Series(np.random.randn(10), idx)
ser2 = Series(np.random.randn(10), idx)
ax = ser.plot(secondary_y=True)
self.assertTrue(hasattr(ax, 'left_ax'))
self.assertFalse(hasattr(ax, 'right_ax'))
fig = ax.get_figure()
axes = fig.get_axes()
l = ax.get_lines()[0]
xp = Series(l.get_ydata(), l.get_xdata()).to_timestamp()
assert_series_equal(ser, xp)
self.assertEqual(ax.get_yaxis().get_ticks_position(), 'right')
self.assertFalse(axes[0].get_yaxis().get_visible())
plt.close(fig)
ax2 = ser2.plot()
self.assertEqual(ax2.get_yaxis().get_ticks_position(), 'default')
plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
self.assertTrue(ax.get_yaxis().get_visible())
@slow
def test_secondary_kde(self):
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
import matplotlib.pyplot as plt # noqa
ser = Series(np.random.randn(10))
ax = ser.plot(secondary_y=True, kind='density')
self.assertTrue(hasattr(ax, 'left_ax'))
self.assertFalse(hasattr(ax, 'right_ax'))
fig = ax.get_figure()
axes = fig.get_axes()
self.assertEqual(axes[1].get_yaxis().get_ticks_position(), 'right')
@slow
def test_secondary_bar(self):
ser = Series(np.random.randn(10))
ax = ser.plot(secondary_y=True, kind='bar')
fig = ax.get_figure()
axes = fig.get_axes()
self.assertEqual(axes[1].get_yaxis().get_ticks_position(), 'right')
@slow
def test_secondary_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=['a', 'b', 'c'])
axes = df.plot(secondary_y=['a', 'c'], subplots=True)
self.assertEqual(axes[0].get_yaxis().get_ticks_position(), 'right')
self.assertEqual(axes[1].get_yaxis().get_ticks_position(), 'default')
self.assertEqual(axes[2].get_yaxis().get_ticks_position(), 'right')
@slow
def test_secondary_bar_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=['a', 'b', 'c'])
axes = df.plot(kind='bar', secondary_y=['a', 'c'], subplots=True)
self.assertEqual(axes[0].get_yaxis().get_ticks_position(), 'right')
self.assertEqual(axes[1].get_yaxis().get_ticks_position(), 'default')
self.assertEqual(axes[2].get_yaxis().get_ticks_position(), 'right')
def test_mixed_freq_regular_first(self):
import matplotlib.pyplot as plt # noqa
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
# it works!
s1.plot()
ax2 = s2.plot(style='g')
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
self.assertTrue(idx1.equals(s1.index.to_period('B')))
self.assertTrue(idx2.equals(s2.index.to_period('B')))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
self.assertEqual(left, pidx[0].ordinal)
self.assertEqual(right, pidx[-1].ordinal)
@slow
def test_mixed_freq_irregular_first(self):
import matplotlib.pyplot as plt # noqa
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
s2.plot(style='g')
ax = s1.plot()
self.assertFalse(hasattr(ax, 'freq'))
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.asobject.values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.asobject.values)
def test_mixed_freq_regular_first_df(self):
# GH 9852
import matplotlib.pyplot as plt # noqa
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
ax = s1.plot()
ax2 = s2.plot(style='g', ax=ax)
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
self.assertTrue(idx1.equals(s1.index.to_period('B')))
self.assertTrue(idx2.equals(s2.index.to_period('B')))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
self.assertEqual(left, pidx[0].ordinal)
self.assertEqual(right, pidx[-1].ordinal)
@slow
def test_mixed_freq_irregular_first_df(self):
# GH 9852
import matplotlib.pyplot as plt # noqa
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
ax = s2.plot(style='g')
ax = s1.plot(ax=ax)
self.assertFalse(hasattr(ax, 'freq'))
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.asobject.values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.asobject.values)
def test_mixed_freq_hf_first(self):
idxh = date_range('1/1/1999', periods=365, freq='D')
idxl = date_range('1/1/1999', periods=12, freq='M')
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
high.plot()
ax = low.plot()
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, 'D')
@slow
def test_mixed_freq_alignment(self):
ts_ind = date_range('2012-01-01 13:00', '2012-01-02', freq='H')
ts_data = np.random.randn(12)
ts = Series(ts_data, index=ts_ind)
ts2 = ts.asfreq('T').interpolate()
ax = ts.plot()
ts2.plot(style='r')
self.assertEqual(ax.lines[0].get_xdata()[0],
ax.lines[1].get_xdata()[0])
@slow
def test_mixed_freq_lf_first(self):
import matplotlib.pyplot as plt
idxh = date_range('1/1/1999', periods=365, freq='D')
idxl = date_range('1/1/1999', periods=12, freq='M')
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
low.plot(legend=True)
ax = high.plot(legend=True)
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, 'D')
leg = ax.get_legend()
self.assertEqual(len(leg.texts), 2)
plt.close(ax.get_figure())
idxh = date_range('1/1/1999', periods=240, freq='T')
idxl = date_range('1/1/1999', periods=4, freq='H')
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
low.plot()
ax = high.plot()
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, 'T')
def test_mixed_freq_irreg_period(self):
ts = tm.makeTimeSeries()
irreg = ts[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
rng = period_range('1/3/2000', periods=30, freq='B')
ps = Series(np.random.randn(len(rng)), rng)
irreg.plot()
ps.plot()
@slow
def test_to_weekly_resampling(self):
idxh = date_range('1/1/1999', periods=52, freq='W')
idxl = date_range('1/1/1999', periods=12, freq='M')
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
high.plot()
ax = low.plot()
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, idxh.freq)
# tsplot
from pandas.tseries.plotting import tsplot
import matplotlib.pyplot as plt
tsplot(high, plt.Axes.plot)
lines = tsplot(low, plt.Axes.plot)
for l in lines:
self.assertTrue(PeriodIndex(data=l.get_xdata()).freq, idxh.freq)
@slow
def test_from_weekly_resampling(self):
idxh = date_range('1/1/1999', periods=52, freq='W')
idxl = date_range('1/1/1999', periods=12, freq='M')
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
low.plot()
ax = high.plot()
expected_h = idxh.to_period().asi8.astype(np.float64)
expected_l = np.array([1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544,
1549, 1553, 1558, 1562], dtype=np.float64)
for l in ax.get_lines():
self.assertTrue(PeriodIndex(data=l.get_xdata()).freq, idxh.freq)
xdata = l.get_xdata(orig=False)
if len(xdata) == 12: # idxl lines
self.assert_numpy_array_equal(xdata, expected_l)
else:
self.assert_numpy_array_equal(xdata, expected_h)
tm.close()
# tsplot
from pandas.tseries.plotting import tsplot
import matplotlib.pyplot as plt
tsplot(low, plt.Axes.plot)
lines = tsplot(high, plt.Axes.plot)
for l in lines:
self.assertTrue(PeriodIndex(data=l.get_xdata()).freq, idxh.freq)
xdata = l.get_xdata(orig=False)
if len(xdata) == 12: # idxl lines
self.assert_numpy_array_equal(xdata, expected_l)
else:
self.assert_numpy_array_equal(xdata, expected_h)
@slow
def test_from_resampling_area_line_mixed(self):
idxh = date_range('1/1/1999', periods=52, freq='W')
idxl = date_range('1/1/1999', periods=12, freq='M')
high = DataFrame(np.random.rand(len(idxh), 3),
index=idxh, columns=[0, 1, 2])
low = DataFrame(np.random.rand(len(idxl), 3),
index=idxl, columns=[0, 1, 2])
# low to high
for kind1, kind2 in [('line', 'area'), ('area', 'line')]:
ax = low.plot(kind=kind1, stacked=True)
ax = high.plot(kind=kind2, stacked=True, ax=ax)
# check low dataframe result
expected_x = np.array([1514, 1519, 1523, 1527, 1531, 1536, 1540,
1544, 1549, 1553, 1558, 1562],
dtype=np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
l = ax.lines[i]
self.assertEqual(PeriodIndex(l.get_xdata()).freq, idxh.freq)
self.assert_numpy_array_equal(l.get_xdata(orig=False),
expected_x)
# check stacked values are correct
expected_y += low[i].values
self.assert_numpy_array_equal(
l.get_ydata(orig=False), expected_y)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
l = ax.lines[3 + i]
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq,
idxh.freq)
self.assert_numpy_array_equal(l.get_xdata(orig=False),
expected_x)
expected_y += high[i].values
self.assert_numpy_array_equal(l.get_ydata(orig=False),
expected_y)
# high to low
for kind1, kind2 in [('line', 'area'), ('area', 'line')]:
ax = high.plot(kind=kind1, stacked=True)
ax = low.plot(kind=kind2, stacked=True, ax=ax)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
l = ax.lines[i]
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq,
idxh.freq)
self.assert_numpy_array_equal(
l.get_xdata(orig=False), expected_x)
expected_y += high[i].values
self.assert_numpy_array_equal(
l.get_ydata(orig=False), expected_y)
# check low dataframe result
expected_x = np.array([1514, 1519, 1523, 1527, 1531, 1536, 1540,
1544, 1549, 1553, 1558, 1562],
dtype=np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
l = ax.lines[3 + i]
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq,
idxh.freq)
self.assert_numpy_array_equal(l.get_xdata(orig=False),
expected_x)
expected_y += low[i].values
self.assert_numpy_array_equal(l.get_ydata(orig=False),
expected_y)
@slow
def test_mixed_freq_second_millisecond(self):
# GH 7772, GH 7760
idxh = date_range('2014-07-01 09:00', freq='S', periods=50)
idxl = date_range('2014-07-01 09:00', freq='100L', periods=500)
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
# high to low
high.plot()
ax = low.plot()
self.assertEqual(len(ax.get_lines()), 2)
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, 'L')
tm.close()
# low to high
low.plot()
ax = high.plot()
self.assertEqual(len(ax.get_lines()), 2)
for l in ax.get_lines():
self.assertEqual(PeriodIndex(data=l.get_xdata()).freq, 'L')
@slow
def test_irreg_dtypes(self):
# date
idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
df = DataFrame(np.random.randn(len(idx), 3), Index(idx, dtype=object))
_check_plot_works(df.plot)
# np.datetime64
idx = date_range('1/1/2000', periods=10)
idx = idx[[0, 2, 5, 9]].asobject
df = DataFrame(np.random.randn(len(idx), 3), idx)
_check_plot_works(df.plot)
@slow
def test_time(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
df = DataFrame({'a': np.random.randn(len(ts)),
'b': np.random.randn(len(ts))},
index=ts)
ax = df.plot()
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
h, m = divmod(m, 60)
xp = l.get_text()
if len(xp) > 0:
rs = time(h, m, s).strftime('%H:%M:%S')
self.assertEqual(xp, rs)
# change xlim
ax.set_xlim('1:30', '5:00')
# check tick labels again
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
h, m = divmod(m, 60)
xp = l.get_text()
if len(xp) > 0:
rs = time(h, m, s).strftime('%H:%M:%S')
self.assertEqual(xp, rs)
@slow
def test_time_musec(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(microseconds=int(x))).time()
for x in deltas])
df = DataFrame({'a': np.random.randn(len(ts)),
'b': np.random.randn(len(ts))},
index=ts)
ax = df.plot()
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
# TODO: unused?
# us = int((t - int(t)) * 1e6)
h, m = divmod(m, 60)
xp = l.get_text()
if len(xp) > 0:
rs = time(h, m, s).strftime('%H:%M:%S.%f')
self.assertEqual(xp, rs)