forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_setitem.py
887 lines (714 loc) · 27.5 KB
/
test_setitem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
from datetime import (
date,
datetime,
)
import numpy as np
import pytest
from pandas import (
Categorical,
DatetimeIndex,
Index,
MultiIndex,
NaT,
Series,
Timedelta,
Timestamp,
date_range,
period_range,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
from pandas.tseries.offsets import BDay
class TestSetitemDT64Values:
def test_setitem_none_nan(self):
series = Series(date_range("1/1/2000", periods=10))
series[3] = None
assert series[3] is NaT
series[3:5] = None
assert series[4] is NaT
series[5] = np.nan
assert series[5] is NaT
series[5:7] = np.nan
assert series[6] is NaT
def test_setitem_multiindex_empty_slice(self):
# https://github.com/pandas-dev/pandas/issues/35878
idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
result = Series([1, 2], index=idx)
expected = result.copy()
result.loc[[]] = 0
tm.assert_series_equal(result, expected)
def test_setitem_with_string_index(self):
# GH#23451
ser = Series([1, 2, 3], index=["Date", "b", "other"])
ser["Date"] = date.today()
assert ser.Date == date.today()
assert ser["Date"] == date.today()
def test_setitem_tuple_with_datetimetz_values(self):
# GH#20441
arr = date_range("2017", periods=4, tz="US/Eastern")
index = [(0, 1), (0, 2), (0, 3), (0, 4)]
result = Series(arr, index=index)
expected = result.copy()
result[(0, 1)] = np.nan
expected.iloc[0] = np.nan
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"])
def test_setitem_with_tz(self, tz, indexer_sli):
orig = Series(date_range("2016-01-01", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2016-01-01 02:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
def test_setitem_with_tz_dst(self, indexer_sli):
# GH XXX TODO: fill in GH ref
tz = "US/Eastern"
orig = Series(date_range("2016-11-06", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00-04:00", tz=tz),
Timestamp("2011-01-01 00:00-05:00", tz=tz),
Timestamp("2016-11-06 01:00-05:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
class TestSetitemScalarIndexer:
def test_setitem_negative_out_of_bounds(self):
ser = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10))
msg = "index -11 is out of bounds for axis 0 with size 10"
with pytest.raises(IndexError, match=msg):
ser[-11] = "foo"
@pytest.mark.parametrize("indexer", [tm.loc, tm.at])
@pytest.mark.parametrize("ser_index", [0, 1])
def test_setitem_series_object_dtype(self, indexer, ser_index):
# GH#38303
ser = Series([0, 0], dtype="object")
idxr = indexer(ser)
idxr[0] = Series([42], index=[ser_index])
expected = Series([Series([42], index=[ser_index]), 0], dtype="object")
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize("index, exp_value", [(0, 42.0), (1, np.nan)])
def test_setitem_series(self, index, exp_value):
# GH#38303
ser = Series([0, 0])
ser.loc[0] = Series([42], index=[index])
expected = Series([exp_value, 0])
tm.assert_series_equal(ser, expected)
class TestSetitemSlices:
def test_setitem_slice_float_raises(self, datetime_series):
msg = (
"cannot do slice indexing on DatetimeIndex with these indexers "
r"\[{key}\] of type float"
)
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
datetime_series[4.0:10.0] = 0
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
datetime_series[4.5:10.0] = 0
def test_setitem_slice(self):
ser = Series(range(10), index=list(range(10)))
ser[-12:] = 0
assert (ser == 0).all()
ser[:-12] = 5
assert (ser == 0).all()
def test_setitem_slice_integers(self):
ser = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16])
ser[:4] = 0
assert (ser[:4] == 0).all()
assert not (ser[4:] == 0).any()
def test_setitem_slicestep(self):
# caught this bug when writing tests
series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20))
series[::2] = 0
assert (series[::2] == 0).all()
class TestSetitemBooleanMask:
def test_setitem_boolean(self, string_series):
mask = string_series > string_series.median()
# similar indexed series
result = string_series.copy()
result[mask] = string_series * 2
expected = string_series * 2
tm.assert_series_equal(result[mask], expected[mask])
# needs alignment
result = string_series.copy()
result[mask] = (string_series * 2)[0:5]
expected = (string_series * 2)[0:5].reindex_like(string_series)
expected[-mask] = string_series[mask]
tm.assert_series_equal(result[mask], expected[mask])
def test_setitem_boolean_corner(self, datetime_series):
ts = datetime_series
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ts[mask_shifted] = 1
with pytest.raises(IndexingError, match=msg):
ts.loc[mask_shifted] = 1
def test_setitem_boolean_different_order(self, string_series):
ordered = string_series.sort_values()
copy = string_series.copy()
copy[ordered > 0] = 0
expected = string_series.copy()
expected[expected > 0] = 0
tm.assert_series_equal(copy, expected)
@pytest.mark.parametrize("func", [list, np.array, Series])
def test_setitem_boolean_python_list(self, func):
# GH19406
ser = Series([None, "b", None])
mask = func([True, False, True])
ser[mask] = ["a", "c"]
expected = Series(["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean_nullable_int_types(self, any_nullable_numeric_dtype):
# GH: 26468
ser = Series([5, 6, 7, 8], dtype=any_nullable_numeric_dtype)
ser[ser > 6] = Series(range(4), dtype=any_nullable_numeric_dtype)
expected = Series([5, 6, 2, 3], dtype=any_nullable_numeric_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_nullable_numeric_dtype)
ser.loc[ser > 6] = Series(range(4), dtype=any_nullable_numeric_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_nullable_numeric_dtype)
loc_ser = Series(range(4), dtype=any_nullable_numeric_dtype)
ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1]
tm.assert_series_equal(ser, expected)
def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self):
# GH#30567
ser = Series([None] * 10)
mask = [False] * 3 + [True] * 5 + [False] * 2
ser[mask] = range(5)
result = ser
expected = Series([None] * 3 + list(range(5)) + [None] * 2).astype("object")
tm.assert_series_equal(result, expected)
class TestSetitemViewCopySemantics:
def test_setitem_invalidates_datetime_index_freq(self):
# GH#24096 altering a datetime64tz Series inplace invalidates the
# `freq` attribute on the underlying DatetimeIndex
dti = date_range("20130101", periods=3, tz="US/Eastern")
ts = dti[1]
ser = Series(dti)
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert dti.freq == "D"
ser.iloc[1] = NaT
assert ser._values.freq is None
# check that the DatetimeIndex was not altered in place
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert dti[1] == ts
assert dti.freq == "D"
def test_dt64tz_setitem_does_not_mutate_dti(self):
# GH#21907, GH#24096
dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
ts = dti[0]
ser = Series(dti)
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert ser._mgr.arrays[0] is not dti
assert ser._mgr.arrays[0]._data.base is not dti._data._data.base
ser[::3] = NaT
assert ser[0] is NaT
assert dti[0] == ts
class TestSetitemCallable:
def test_setitem_callable_key(self):
# GH#12533
ser = Series([1, 2, 3, 4], index=list("ABCD"))
ser[lambda x: "A"] = -1
expected = Series([-1, 2, 3, 4], index=list("ABCD"))
tm.assert_series_equal(ser, expected)
def test_setitem_callable_other(self):
# GH#13299
inc = lambda x: x + 1
ser = Series([1, 2, -1, 4])
ser[ser < 0] = inc
expected = Series([1, 2, inc, 4])
tm.assert_series_equal(ser, expected)
class TestSetitemWithExpansion:
def test_setitem_empty_series(self):
# GH#10193
key = Timestamp("2012-01-01")
series = Series(dtype=object)
series[key] = 47
expected = Series(47, [key])
tm.assert_series_equal(series, expected)
def test_setitem_empty_series_datetimeindex_preserves_freq(self):
# GH#33573 our index should retain its freq
series = Series([], DatetimeIndex([], freq="D"), dtype=object)
key = Timestamp("2012-01-01")
series[key] = 47
expected = Series(47, DatetimeIndex([key], freq="D"))
tm.assert_series_equal(series, expected)
assert series.index.freq == expected.index.freq
def test_setitem_empty_series_timestamp_preserves_dtype(self):
# GH 21881
timestamp = Timestamp(1412526600000000000)
series = Series([timestamp], index=["timestamp"], dtype=object)
expected = series["timestamp"]
series = Series([], dtype=object)
series["anything"] = 300.0
series["timestamp"] = timestamp
result = series["timestamp"]
assert result == expected
@pytest.mark.parametrize(
"td",
[
Timedelta("9 days"),
Timedelta("9 days").to_timedelta64(),
Timedelta("9 days").to_pytimedelta(),
],
)
def test_append_timedelta_does_not_cast(self, td):
# GH#22717 inserting a Timedelta should _not_ cast to int64
expected = Series(["x", td], index=[0, "td"], dtype=object)
ser = Series(["x"])
ser["td"] = td
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
ser = Series(["x"])
ser.loc["td"] = Timedelta("9 days")
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
def test_setitem_with_expansion_type_promotion(self):
# GH#12599
ser = Series(dtype=object)
ser["a"] = Timestamp("2016-01-01")
ser["b"] = 3.0
ser["c"] = "foo"
expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_not_contained(self, string_series):
# set item that's not contained
ser = string_series.copy()
assert "foobar" not in ser.index
ser["foobar"] = 1
app = Series([1], index=["foobar"], name="series")
expected = string_series.append(app)
tm.assert_series_equal(ser, expected)
def test_setitem_scalar_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
for n in range(len(series)):
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[n] = 1
assert array[n] == 0
def test_setitem_slice_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[1:3] = 1
assert not array.any()
def test_setitem_categorical_assigning_ops():
orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
ser = orig.copy()
ser[:] = "a"
exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[1] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[ser.index > 0] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[[False, True]] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser.index = ["x", "y"]
ser["y"] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"])
tm.assert_series_equal(ser, exp)
def test_setitem_nan_into_categorical():
# ensure that one can set something to np.nan
ser = Series(Categorical([1, 2, 3]))
exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
ser[1] = np.nan
tm.assert_series_equal(ser, exp)
class TestSetitemCasting:
@pytest.mark.parametrize("unique", [True, False])
@pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type)
def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique):
# dont cast these 3-like values to bool
ser = Series([True, False])
if not unique:
ser.index = [1, 1]
indexer_sli(ser)[1] = val
assert type(ser.iloc[1]) == type(val)
expected = Series([True, val], dtype=object, index=ser.index)
if not unique and indexer_sli is not tm.iloc:
expected = Series([val, val], dtype=object, index=[1, 1])
tm.assert_series_equal(ser, expected)
class SetitemCastingEquivalents:
"""
Check each of several methods that _should_ be equivalent to `obj[key] = val`
We assume that
- obj.index is the default Index(range(len(obj)))
- the setitem does not expand the obj
"""
@pytest.fixture
def is_inplace(self):
"""
Indicate that we are not (yet) checking whether or not setting is inplace.
"""
return None
def check_indexer(self, obj, key, expected, val, indexer, is_inplace):
orig = obj
obj = obj.copy()
arr = obj._values
indexer(obj)[key] = val
tm.assert_series_equal(obj, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def _check_inplace(self, is_inplace, orig, arr, obj):
if is_inplace is None:
# We are not (yet) checking whether setting is inplace or not
pass
elif is_inplace:
if arr.dtype.kind in ["m", "M"]:
# We may not have the same DTA/TDA, but will have the same
# underlying data
assert arr._data is obj._values._data
else:
assert obj._values is arr
else:
# otherwise original array should be unchanged
tm.assert_equal(arr, orig._values)
def test_int_key(self, obj, key, expected, val, indexer_sli, is_inplace):
if not isinstance(key, int):
return
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
if indexer_sli is tm.loc:
self.check_indexer(obj, key, expected, val, tm.at, is_inplace)
elif indexer_sli is tm.iloc:
self.check_indexer(obj, key, expected, val, tm.iat, is_inplace)
rng = range(key, key + 1)
self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace)
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
slc = slice(key, key + 1)
self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace)
ilkey = [key]
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
def test_slice_key(self, obj, key, expected, val, indexer_sli, is_inplace):
if not isinstance(key, slice):
return
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
ilkey = list(range(len(obj)))[key]
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
def test_mask_key(self, obj, key, expected, val, indexer_sli):
# setitem with boolean mask
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
obj = obj.copy()
indexer_sli(obj)[mask] = val
tm.assert_series_equal(obj, expected)
def test_series_where(self, obj, key, expected, val, is_inplace):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
orig = obj
obj = obj.copy()
arr = obj._values
res = obj.where(~mask, val)
tm.assert_series_equal(res, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def test_index_where(self, obj, key, expected, val, request):
if Index(obj).dtype != obj.dtype:
pytest.skip("test not applicable for this dtype")
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
if obj.dtype == bool:
msg = "Index/Series casting behavior inconsistent GH#38692"
mark = pytest.mark.xfail(reason=msg)
request.node.add_marker(mark)
res = Index(obj).where(~mask, val)
tm.assert_index_equal(res, Index(expected))
def test_index_putmask(self, obj, key, expected, val):
if Index(obj).dtype != obj.dtype:
pytest.skip("test not applicable for this dtype")
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
res = Index(obj).putmask(mask, val)
tm.assert_index_equal(res, Index(expected))
@pytest.mark.parametrize(
"obj,expected,key",
[
pytest.param(
# these induce dtype changes
Series([2, 3, 4, 5, 6, 7, 8, 9, 10]),
Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]),
slice(None, None, 2),
id="int_series_slice_key_step",
),
pytest.param(
Series([True, True, False, False]),
Series([np.nan, True, np.nan, False], dtype=object),
slice(None, None, 2),
id="bool_series_slice_key_step",
),
pytest.param(
# these induce dtype changes
Series(np.arange(10)),
Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]),
slice(None, 5),
id="int_series_slice_key",
),
pytest.param(
# changes dtype GH#4463
Series([1, 2, 3]),
Series([np.nan, 2, 3]),
0,
id="int_series_int_key",
),
pytest.param(
# changes dtype GH#4463
Series([False]),
Series([np.nan], dtype=object),
# TODO: maybe go to float64 since we are changing the _whole_ Series?
0,
id="bool_series_int_key_change_all",
),
pytest.param(
# changes dtype GH#4463
Series([False, True]),
Series([np.nan, True], dtype=object),
0,
id="bool_series_int_key",
),
],
)
class TestSetitemCastingEquivalents(SetitemCastingEquivalents):
@pytest.fixture(params=[np.nan, np.float64("NaN")])
def val(self, request):
"""
One python float NaN, one np.float64. Only np.float64 has a `dtype`
attribute.
"""
return request.param
class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents):
# timedelta64 should not be treated as integers when setting into
# numeric Series
@pytest.fixture
def val(self):
td = np.timedelta64(4, "ns")
return td
# TODO: could also try np.full((1,), td)
@pytest.fixture(params=[complex, int, float])
def dtype(self, request):
return request.param
@pytest.fixture
def obj(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
return ser
@pytest.fixture
def expected(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
ser = ser.astype(object)
ser.values[0] = np.timedelta64(4, "ns")
return ser
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def is_inplace(self):
"""
Indicate we do _not_ expect the setting to be done inplace.
"""
return False
class TestSetitemDT64IntoInt(SetitemCastingEquivalents):
# GH#39619 dont cast dt64 to int when doing this setitem
@pytest.fixture(params=["M8[ns]", "m8[ns]"])
def dtype(self, request):
return request.param
@pytest.fixture
def scalar(self, dtype):
val = np.datetime64("2021-01-18 13:25:00", "ns")
if dtype == "m8[ns]":
val = val - val
return val
@pytest.fixture
def expected(self, scalar):
expected = Series([scalar, scalar, 3], dtype=object)
assert isinstance(expected[0], type(scalar))
return expected
@pytest.fixture
def obj(self):
return Series([1, 2, 3])
@pytest.fixture
def key(self):
return slice(None, -1)
@pytest.fixture(params=[None, list, np.array])
def val(self, scalar, request):
box = request.param
if box is None:
return scalar
return box([scalar, scalar])
@pytest.fixture
def is_inplace(self):
return False
class TestSetitemNAPeriodDtype(SetitemCastingEquivalents):
# Setting compatible NA values into Series with PeriodDtype
@pytest.fixture
def expected(self, key):
exp = Series(period_range("2000-01-01", periods=10, freq="D"))
exp._values.view("i8")[key] = NaT.value
assert exp[key] is NaT or all(x is NaT for x in exp[key])
return exp
@pytest.fixture
def obj(self):
return Series(period_range("2000-01-01", periods=10, freq="D"))
@pytest.fixture(params=[3, slice(3, 5)])
def key(self, request):
return request.param
@pytest.fixture(params=[None, np.nan])
def val(self, request):
return request.param
@pytest.fixture
def is_inplace(self):
return True
class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents):
# some nat-like values should be cast to datetime64/timedelta64 when
# inserting into a datetime64/timedelta64 series. Others should coerce
# to object and retain their dtypes.
# GH#18586 for td64 and boolean mask case
@pytest.fixture(
params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"]
)
def dtype(self, request):
return request.param
@pytest.fixture
def obj(self, dtype):
i8vals = date_range("2016-01-01", periods=3).asi8
idx = Index(i8vals, dtype=dtype)
assert idx.dtype == dtype
return Series(idx)
@pytest.fixture(
params=[
None,
np.nan,
NaT,
np.timedelta64("NaT", "ns"),
np.datetime64("NaT", "ns"),
]
)
def val(self, request):
return request.param
@pytest.fixture
def is_inplace(self, val, obj):
# td64 -> cast to object iff val is datetime64("NaT")
# dt64 -> cast to object iff val is timedelta64("NaT")
# dt64tz -> cast to object with anything _but_ NaT
return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype
@pytest.fixture
def expected(self, obj, val, is_inplace):
dtype = obj.dtype if is_inplace else object
expected = Series([val] + list(obj[1:]), dtype=dtype)
return expected
@pytest.fixture
def key(self):
return 0
class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents):
# GH#24024
@pytest.fixture
def obj(self):
return Series(date_range("2000", periods=2, tz="US/Central"))
@pytest.fixture
def val(self):
return Timestamp("2000", tz="US/Eastern")
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def expected(self):
expected = Series(
[
Timestamp("2000-01-01 00:00:00-05:00", tz="US/Eastern"),
Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"),
],
dtype=object,
)
return expected
@pytest.mark.parametrize(
"obj,expected",
[
# For numeric series, we should coerce to NaN.
(Series([1, 2, 3]), Series([np.nan, 2, 3])),
(Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0])),
# For datetime series, we should coerce to NaT.
(
Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]),
Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]),
),
# For objects, we should preserve the None value.
(Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"])),
],
)
class TestSeriesNoneCoercion(SetitemCastingEquivalents):
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def val(self):
return None
@pytest.fixture
def is_inplace(self, obj):
# This is specific to the 4 cases currently implemented for this class.
return obj.dtype.kind != "i"