forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_xs.py
420 lines (361 loc) · 14.9 KB
/
test_xs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import re
import numpy as np
import pytest
from pandas.errors import SettingWithCopyError
from pandas import (
DataFrame,
Index,
IndexSlice,
MultiIndex,
Series,
concat,
)
import pandas._testing as tm
from pandas.tseries.offsets import BDay
@pytest.fixture
def four_level_index_dataframe():
arr = np.array(
[
[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
[-0.6662, -0.5243, -0.358, 0.89145, 2.5838],
]
)
index = MultiIndex(
levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]],
codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
names=["one", "two", "three", "four"],
)
return DataFrame(arr, index=index, columns=list("ABCDE"))
class TestXS:
def test_xs(self, float_frame, datetime_frame, using_copy_on_write):
float_frame_orig = float_frame.copy()
idx = float_frame.index[5]
xs = float_frame.xs(idx)
for item, value in xs.items():
if np.isnan(value):
assert np.isnan(float_frame[item][idx])
else:
assert value == float_frame[item][idx]
# mixed-type xs
test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
frame = DataFrame(test_data)
xs = frame.xs("1")
assert xs.dtype == np.object_
assert xs["A"] == 1
assert xs["B"] == "1"
with pytest.raises(
KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00')")
):
datetime_frame.xs(datetime_frame.index[0] - BDay())
# xs get column
series = float_frame.xs("A", axis=1)
expected = float_frame["A"]
tm.assert_series_equal(series, expected)
# view is returned if possible
series = float_frame.xs("A", axis=1)
series[:] = 5
if using_copy_on_write:
# but with CoW the view shouldn't propagate mutations
tm.assert_series_equal(float_frame["A"], float_frame_orig["A"])
assert not (expected == 5).all()
else:
assert (expected == 5).all()
def test_xs_corner(self):
# pathological mixed-type reordering case
df = DataFrame(index=[0])
df["A"] = 1.0
df["B"] = "foo"
df["C"] = 2.0
df["D"] = "bar"
df["E"] = 3.0
xs = df.xs(0)
exp = Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0)
tm.assert_series_equal(xs, exp)
# no columns but Index(dtype=object)
df = DataFrame(index=["a", "b", "c"])
result = df.xs("a")
expected = Series([], name="a", dtype=np.float64)
tm.assert_series_equal(result, expected)
def test_xs_duplicates(self):
df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"])
cross = df.xs("c")
exp = df.iloc[2]
tm.assert_series_equal(cross, exp)
def test_xs_keep_level(self):
df = DataFrame(
{
"day": {0: "sat", 1: "sun"},
"flavour": {0: "strawberry", 1: "strawberry"},
"sales": {0: 10, 1: 12},
"year": {0: 2008, 1: 2008},
}
).set_index(["year", "flavour", "day"])
result = df.xs("sat", level="day", drop_level=False)
expected = df[:1]
tm.assert_frame_equal(result, expected)
result = df.xs((2008, "sat"), level=["year", "day"], drop_level=False)
tm.assert_frame_equal(result, expected)
def test_xs_view(self, using_array_manager, using_copy_on_write):
# in 0.14 this will return a view if possible a copy otherwise, but
# this is numpy dependent
dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5))
df_orig = dm.copy()
if using_copy_on_write:
dm.xs(2)[:] = 20
tm.assert_frame_equal(dm, df_orig)
elif using_array_manager:
# INFO(ArrayManager) with ArrayManager getting a row as a view is
# not possible
msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(SettingWithCopyError, match=msg):
dm.xs(2)[:] = 20
assert not (dm.xs(2) == 20).any()
else:
dm.xs(2)[:] = 20
assert (dm.xs(2) == 20).all()
class TestXSWithMultiIndex:
def test_xs_doc_example(self):
# TODO: more descriptive name
# based on example in advanced.rst
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = list(zip(*arrays))
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
result = df.xs(("one", "bar"), level=("second", "first"), axis=1)
expected = df.iloc[:, [0]]
tm.assert_frame_equal(result, expected)
def test_xs_integer_key(self):
# see GH#2107
dates = range(20111201, 20111205)
ids = list("abcde")
index = MultiIndex.from_product([dates, ids], names=["date", "secid"])
df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"])
result = df.xs(20111201, level="date")
expected = df.loc[20111201, :]
tm.assert_frame_equal(result, expected)
def test_xs_level(self, multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs("two", level="second")
expected = df[df.index.get_level_values(1) == "two"]
expected.index = Index(["foo", "bar", "baz", "qux"], name="first")
tm.assert_frame_equal(result, expected)
def test_xs_level_eq_2(self):
arr = np.random.randn(3, 5)
index = MultiIndex(
levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]],
codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]],
)
df = DataFrame(arr, index=index)
expected = DataFrame(arr[1:2], index=[["a"], ["b"]])
result = df.xs("c", level=2)
tm.assert_frame_equal(result, expected)
def test_xs_setting_with_copy_error(
self, multiindex_dataframe_random_data, using_copy_on_write
):
# this is a copy in 0.14
df = multiindex_dataframe_random_data
df_orig = df.copy()
result = df.xs("two", level="second")
if using_copy_on_write:
result[:] = 10
else:
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(SettingWithCopyError, match=msg):
result[:] = 10
tm.assert_frame_equal(df, df_orig)
def test_xs_setting_with_copy_error_multiple(
self, four_level_index_dataframe, using_copy_on_write
):
# this is a copy in 0.14
df = four_level_index_dataframe
df_orig = df.copy()
result = df.xs(("a", 4), level=["one", "four"])
if using_copy_on_write:
result[:] = 10
else:
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(SettingWithCopyError, match=msg):
result[:] = 10
tm.assert_frame_equal(df, df_orig)
@pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])])
def test_xs_with_duplicates(self, key, level, multiindex_dataframe_random_data):
# see GH#13719
frame = multiindex_dataframe_random_data
df = concat([frame] * 2)
assert df.index.is_unique is False
expected = concat([frame.xs("one", level="second")] * 2)
if isinstance(key, list):
result = df.xs(tuple(key), level=level)
else:
result = df.xs(key, level=level)
tm.assert_frame_equal(result, expected)
def test_xs_missing_values_in_index(self):
# see GH#6574
# missing values in returned index should be preserved
acc = [
("a", "abcde", 1),
("b", "bbcde", 2),
("y", "yzcde", 25),
("z", "xbcde", 24),
("z", None, 26),
("z", "zbcde", 25),
("z", "ybcde", 26),
]
df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"])
expected = DataFrame(
{"cnt": [24, 26, 25, 26]},
index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"),
)
result = df.xs("z", level="a1")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"key, level, exp_arr, exp_index",
[
("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")),
("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")),
],
)
def test_xs_named_levels_axis_eq_1(self, key, level, exp_arr, exp_index):
# see GH#2903
arr = np.random.randn(4, 4)
index = MultiIndex(
levels=[["a", "b"], ["bar", "foo", "hello", "world"]],
codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
names=["lvl0", "lvl1"],
)
df = DataFrame(arr, columns=index)
result = df.xs(key, level=level, axis=1)
expected = DataFrame(exp_arr(arr), columns=exp_index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer",
[
lambda df: df.xs(("a", 4), level=["one", "four"]),
lambda df: df.xs("a").xs(4, level="four"),
],
)
def test_xs_level_multiple(self, indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
expected_index = MultiIndex(
levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"]
)
expected = DataFrame(
expected_values, index=expected_index, columns=list("ABCDE")
)
result = indexer(df)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")]
)
def test_xs_level0(self, indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [
[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
]
expected_index = MultiIndex(
levels=[["b", "q"], [10.0032, 20.0], [4, 5]],
codes=[[0, 1], [0, 1], [1, 0]],
names=["two", "three", "four"],
)
expected = DataFrame(
expected_values, index=expected_index, columns=list("ABCDE")
)
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_xs_values(self, multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(("bar", "two")).values
expected = df.values[4]
tm.assert_almost_equal(result, expected)
def test_xs_loc_equality(self, multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(("bar", "two"))
expected = df.loc[("bar", "two")]
tm.assert_series_equal(result, expected)
def test_xs_IndexSlice_argument_not_implemented(self, frame_or_series):
# GH#35301
index = MultiIndex(
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
obj = DataFrame(np.random.randn(6, 4), index=index)
if frame_or_series is Series:
obj = obj[0]
expected = obj.iloc[-2:].droplevel(0)
result = obj.xs(IndexSlice[("foo", "qux", 0), :])
tm.assert_equal(result, expected)
result = obj.loc[IndexSlice[("foo", "qux", 0), :]]
tm.assert_equal(result, expected)
def test_xs_levels_raises(self, frame_or_series):
obj = DataFrame({"A": [1, 2, 3]})
if frame_or_series is Series:
obj = obj["A"]
msg = "Index must be a MultiIndex"
with pytest.raises(TypeError, match=msg):
obj.xs(0, level="as")
def test_xs_multiindex_droplevel_false(self):
# GH#19056
mi = MultiIndex.from_tuples(
[("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
)
df = DataFrame([[1, 2, 3]], columns=mi)
result = df.xs("a", axis=1, drop_level=False)
expected = DataFrame(
[[1, 2]],
columns=MultiIndex.from_tuples(
[("a", "x"), ("a", "y")], names=["level1", "level2"]
),
)
tm.assert_frame_equal(result, expected)
def test_xs_droplevel_false(self):
# GH#19056
df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
result = df.xs("a", axis=1, drop_level=False)
expected = DataFrame({"a": [1]})
tm.assert_frame_equal(result, expected)
def test_xs_droplevel_false_view(self, using_array_manager, using_copy_on_write):
# GH#37832
df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
result = df.xs("a", axis=1, drop_level=False)
# check that result still views the same data as df
assert np.shares_memory(result.iloc[:, 0]._values, df.iloc[:, 0]._values)
df.iloc[0, 0] = 2
if using_copy_on_write:
# with copy on write the subset is never modified
expected = DataFrame({"a": [1]})
else:
# modifying original df also modifies result when having a single block
expected = DataFrame({"a": [2]})
tm.assert_frame_equal(result, expected)
# with mixed dataframe, modifying the parent doesn't modify result
# TODO the "split" path behaves differently here as with single block
df = DataFrame([[1, 2.5, "a"]], columns=Index(["a", "b", "c"]))
result = df.xs("a", axis=1, drop_level=False)
df.iloc[0, 0] = 2
if using_copy_on_write:
# with copy on write the subset is never modified
expected = DataFrame({"a": [1]})
elif using_array_manager:
# Here the behavior is consistent
expected = DataFrame({"a": [2]})
else:
# FIXME: iloc does not update the array inplace using
# "split" path
expected = DataFrame({"a": [1]})
tm.assert_frame_equal(result, expected)
def test_xs_list_indexer_droplevel_false(self):
# GH#41760
mi = MultiIndex.from_tuples([("x", "m", "a"), ("x", "n", "b"), ("y", "o", "c")])
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi)
with pytest.raises(KeyError, match="y"):
df.xs(("x", "y"), drop_level=False, axis=1)