forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray.py
134 lines (108 loc) · 4.12 KB
/
array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import collections
import itertools
import numbers
import random
import string
import sys
import numpy as np
from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.arrays import ExtensionArray
class JSONDtype(ExtensionDtype):
type = collections.Mapping
name = 'json'
@classmethod
def construct_from_string(cls, string):
if string == cls.name:
return cls()
else:
raise TypeError("Cannot construct a '{}' from "
"'{}'".format(cls, string))
class JSONArray(ExtensionArray):
dtype = JSONDtype()
def __init__(self, values):
for val in values:
if not isinstance(val, self.dtype.type):
raise TypeError
self.data = values
@classmethod
def _constructor_from_sequence(cls, scalars):
return cls(scalars)
@classmethod
def _from_factorized(cls, values, original):
return cls([collections.UserDict(x) for x in values if x != ()])
def __getitem__(self, item):
if isinstance(item, numbers.Integral):
return self.data[item]
elif isinstance(item, np.ndarray) and item.dtype == 'bool':
return self._constructor_from_sequence([
x for x, m in zip(self, item) if m
])
elif isinstance(item, collections.Iterable):
# fancy indexing
return type(self)([self.data[i] for i in item])
else:
# slice
return type(self)(self.data[item])
def __setitem__(self, key, value):
if isinstance(key, numbers.Integral):
self.data[key] = value
else:
if not isinstance(value, (type(self),
collections.Sequence)):
# broadcast value
value = itertools.cycle([value])
if isinstance(key, np.ndarray) and key.dtype == 'bool':
# masking
for i, (k, v) in enumerate(zip(key, value)):
if k:
assert isinstance(v, self.dtype.type)
self.data[i] = v
else:
for k, v in zip(key, value):
assert isinstance(v, self.dtype.type)
self.data[k] = v
def __len__(self):
return len(self.data)
def __repr__(self):
return 'JSONArary({!r})'.format(self.data)
@property
def nbytes(self):
return sys.getsizeof(self.data)
def isna(self):
return np.array([x == self._na_value for x in self.data])
def take(self, indexer, allow_fill=True, fill_value=None):
try:
output = [self.data[loc] if loc != -1 else self._na_value
for loc in indexer]
except IndexError:
raise IndexError("cannot do a non-empty take from an empty array.")
return self._constructor_from_sequence(output)
def copy(self, deep=False):
return type(self)(self.data[:])
def unique(self):
# Parent method doesn't work since np.array will try to infer
# a 2-dim object.
return type(self)([
dict(x) for x in list(set(tuple(d.items()) for d in self.data))
])
@property
def _na_value(self):
return {}
@classmethod
def _concat_same_type(cls, to_concat):
data = list(itertools.chain.from_iterable([x.data for x in to_concat]))
return cls(data)
def _values_for_factorize(self):
frozen = self._values_for_argsort()
return frozen, ()
def _values_for_argsort(self):
# Disable NumPy's shape inference by including an empty tuple...
# If all the elemnts of self are the same size P, NumPy will
# cast them to an (N, P) array, instead of an (N,) array of tuples.
frozen = [()] + list(tuple(x.items()) for x in self)
return np.array(frozen, dtype=object)[1:]
def make_data():
# TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer
return [collections.UserDict([
(random.choice(string.ascii_letters), random.randint(0, 100))
for _ in range(random.randint(0, 10))]) for _ in range(100)]