forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblocks.py
2384 lines (1978 loc) · 77.6 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from functools import wraps
import inspect
import re
from typing import (
TYPE_CHECKING,
Any,
Callable,
Iterable,
Sequence,
cast,
final,
)
import warnings
import numpy as np
from pandas._libs import (
Timestamp,
internals as libinternals,
lib,
writers,
)
from pandas._libs.internals import BlockPlacement
from pandas._libs.tslibs import IncompatibleFrequency
from pandas._typing import (
ArrayLike,
DtypeObj,
F,
IgnoreRaise,
Shape,
npt,
)
from pandas.errors import AbstractMethodError
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import validate_bool_kwarg
from pandas.core.dtypes.astype import astype_array_safe
from pandas.core.dtypes.cast import (
LossySetitemError,
can_hold_element,
find_result_type,
maybe_downcast_to_dtype,
np_can_hold_element,
soft_convert_objects,
)
from pandas.core.dtypes.common import (
ensure_platform_int,
is_1d_only_ea_dtype,
is_1d_only_ea_obj,
is_dtype_equal,
is_interval_dtype,
is_list_like,
is_sparse,
is_string_dtype,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
ExtensionDtype,
PandasDtype,
PeriodDtype,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
ABCPandasArray,
ABCSeries,
)
from pandas.core.dtypes.inference import is_inferred_bool_dtype
from pandas.core.dtypes.missing import (
is_valid_na_for_dtype,
isna,
na_value_for_dtype,
)
import pandas.core.algorithms as algos
from pandas.core.array_algos.putmask import (
extract_bool_array,
putmask_inplace,
putmask_without_repeat,
setitem_datetimelike_compat,
validate_putmask,
)
from pandas.core.array_algos.quantile import quantile_compat
from pandas.core.array_algos.replace import (
compare_or_regex_search,
replace_regex,
should_use_regex,
)
from pandas.core.array_algos.transforms import shift
from pandas.core.arrays import (
Categorical,
DatetimeArray,
ExtensionArray,
IntervalArray,
PandasArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.arrays.sparse import SparseDtype
from pandas.core.base import PandasObject
import pandas.core.common as com
import pandas.core.computation.expressions as expressions
from pandas.core.construction import (
ensure_wrapped_if_datetimelike,
extract_array,
)
from pandas.core.indexers import check_setitem_lengths
import pandas.core.missing as missing
if TYPE_CHECKING:
from pandas import (
Float64Index,
Index,
)
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
# comparison is faster than is_object_dtype
_dtype_obj = np.dtype("object")
def maybe_split(meth: F) -> F:
"""
If we have a multi-column block, split and operate block-wise. Otherwise
use the original method.
"""
@wraps(meth)
def newfunc(self, *args, **kwargs) -> list[Block]:
if self.ndim == 1 or self.shape[0] == 1:
return meth(self, *args, **kwargs)
else:
# Split and operate column-by-column
return self.split_and_operate(meth, *args, **kwargs)
return cast(F, newfunc)
class Block(PandasObject):
"""
Canonical n-dimensional unit of homogeneous dtype contained in a pandas
data structure
Index-ignorant; let the container take care of that
"""
values: np.ndarray | ExtensionArray
ndim: int
__init__: Callable
__slots__ = ()
is_numeric = False
is_object = False
is_extension = False
_can_consolidate = True
_validate_ndim = True
@final
@cache_readonly
def _consolidate_key(self):
return self._can_consolidate, self.dtype.name
@final
@cache_readonly
def _can_hold_na(self) -> bool:
"""
Can we store NA values in this Block?
"""
dtype = self.dtype
if isinstance(dtype, np.dtype):
return dtype.kind not in ["b", "i", "u"]
return dtype._can_hold_na
@final
@cache_readonly
def is_categorical(self) -> bool:
warnings.warn(
"Block.is_categorical is deprecated and will be removed in a "
"future version. Use isinstance(block.values, Categorical) "
"instead. See https://github.com/pandas-dev/pandas/issues/40226",
DeprecationWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
return isinstance(self.values, Categorical)
@final
@property
def is_bool(self) -> bool:
"""
We can be bool if a) we are bool dtype or b) object dtype with bool objects.
"""
return is_inferred_bool_dtype(self.values)
@final
def external_values(self):
return external_values(self.values)
@final
@cache_readonly
def fill_value(self):
# Used in reindex_indexer
return na_value_for_dtype(self.dtype, compat=False)
@final
def _standardize_fill_value(self, value):
# if we are passed a scalar None, convert it here
if self.dtype != _dtype_obj and is_valid_na_for_dtype(value, self.dtype):
value = self.fill_value
return value
@property
def mgr_locs(self) -> BlockPlacement:
return self._mgr_locs
@mgr_locs.setter
def mgr_locs(self, new_mgr_locs: BlockPlacement) -> None:
self._mgr_locs = new_mgr_locs
@final
def make_block(self, values, placement=None) -> Block:
"""
Create a new block, with type inference propagate any values that are
not specified
"""
if placement is None:
placement = self._mgr_locs
if self.is_extension:
values = ensure_block_shape(values, ndim=self.ndim)
# TODO: perf by not going through new_block
# We assume maybe_coerce_values has already been called
return new_block(values, placement=placement, ndim=self.ndim)
@final
def make_block_same_class(
self, values, placement: BlockPlacement | None = None
) -> Block:
"""Wrap given values in a block of same type as self."""
if placement is None:
placement = self._mgr_locs
if values.dtype.kind in ["m", "M"]:
new_values = ensure_wrapped_if_datetimelike(values)
if new_values is not values:
# TODO(2.0): remove once fastparquet has stopped relying on it
warnings.warn(
"In a future version, Block.make_block_same_class will "
"assume that datetime64 and timedelta64 ndarrays have "
"already been cast to DatetimeArray and TimedeltaArray, "
"respectively.",
DeprecationWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
values = new_values
# We assume maybe_coerce_values has already been called
return type(self)(values, placement=placement, ndim=self.ndim)
@final
def __repr__(self) -> str:
# don't want to print out all of the items here
name = type(self).__name__
if self.ndim == 1:
result = f"{name}: {len(self)} dtype: {self.dtype}"
else:
shape = " x ".join([str(s) for s in self.shape])
result = f"{name}: {self.mgr_locs.indexer}, {shape}, dtype: {self.dtype}"
return result
@final
def __len__(self) -> int:
return len(self.values)
@final
def getitem_block(self, slicer: slice | npt.NDArray[np.intp]) -> Block:
"""
Perform __getitem__-like, return result as block.
Only supports slices that preserve dimensionality.
"""
# Note: the only place where we are called with ndarray[intp]
# is from internals.concat, and we can verify that never happens
# with 1-column blocks, i.e. never for ExtensionBlock.
# Invalid index type "Union[slice, ndarray[Any, dtype[signedinteger[Any]]]]"
# for "BlockPlacement"; expected type "Union[slice, Sequence[int]]"
new_mgr_locs = self._mgr_locs[slicer] # type: ignore[index]
new_values = self._slice(slicer)
if new_values.ndim != self.values.ndim:
raise ValueError("Only same dim slicing is allowed")
return type(self)(new_values, new_mgr_locs, self.ndim)
@final
def getitem_block_columns(
self, slicer: slice, new_mgr_locs: BlockPlacement
) -> Block:
"""
Perform __getitem__-like, return result as block.
Only supports slices that preserve dimensionality.
"""
new_values = self._slice(slicer)
if new_values.ndim != self.values.ndim:
raise ValueError("Only same dim slicing is allowed")
return type(self)(new_values, new_mgr_locs, self.ndim)
@final
def _can_hold_element(self, element: Any) -> bool:
"""require the same dtype as ourselves"""
element = extract_array(element, extract_numpy=True)
return can_hold_element(self.values, element)
@final
def should_store(self, value: ArrayLike) -> bool:
"""
Should we set self.values[indexer] = value inplace or do we need to cast?
Parameters
----------
value : np.ndarray or ExtensionArray
Returns
-------
bool
"""
# faster equivalent to is_dtype_equal(value.dtype, self.dtype)
try:
return value.dtype == self.dtype
except TypeError:
return False
# ---------------------------------------------------------------------
# Apply/Reduce and Helpers
@final
def apply(self, func, **kwargs) -> list[Block]:
"""
apply the function to my values; return a block if we are not
one
"""
result = func(self.values, **kwargs)
return self._split_op_result(result)
def reduce(self, func, ignore_failures: bool = False) -> list[Block]:
# We will apply the function and reshape the result into a single-row
# Block with the same mgr_locs; squeezing will be done at a higher level
assert self.ndim == 2
try:
result = func(self.values)
except (TypeError, NotImplementedError):
if ignore_failures:
return []
raise
if self.values.ndim == 1:
# TODO(EA2D): special case not needed with 2D EAs
res_values = np.array([[result]])
else:
res_values = result.reshape(-1, 1)
nb = self.make_block(res_values)
return [nb]
@final
def _split_op_result(self, result: ArrayLike) -> list[Block]:
# See also: split_and_operate
if result.ndim > 1 and isinstance(result.dtype, ExtensionDtype):
# TODO(EA2D): unnecessary with 2D EAs
# if we get a 2D ExtensionArray, we need to split it into 1D pieces
nbs = []
for i, loc in enumerate(self._mgr_locs):
if not is_1d_only_ea_obj(result):
vals = result[i : i + 1]
else:
vals = result[i]
block = self.make_block(values=vals, placement=loc)
nbs.append(block)
return nbs
nb = self.make_block(result)
return [nb]
@final
def _split(self) -> list[Block]:
"""
Split a block into a list of single-column blocks.
"""
assert self.ndim == 2
new_blocks = []
for i, ref_loc in enumerate(self._mgr_locs):
vals = self.values[slice(i, i + 1)]
bp = BlockPlacement(ref_loc)
nb = type(self)(vals, placement=bp, ndim=2)
new_blocks.append(nb)
return new_blocks
@final
def split_and_operate(self, func, *args, **kwargs) -> list[Block]:
"""
Split the block and apply func column-by-column.
Parameters
----------
func : Block method
*args
**kwargs
Returns
-------
List[Block]
"""
assert self.ndim == 2 and self.shape[0] != 1
res_blocks = []
for nb in self._split():
rbs = func(nb, *args, **kwargs)
res_blocks.extend(rbs)
return res_blocks
# ---------------------------------------------------------------------
# Up/Down-casting
@final
def coerce_to_target_dtype(self, other) -> Block:
"""
coerce the current block to a dtype compat for other
we will return a block, possibly object, and not raise
we can also safely try to coerce to the same dtype
and will receive the same block
"""
new_dtype = find_result_type(self.values, other)
return self.astype(new_dtype, copy=False)
@final
def _maybe_downcast(self, blocks: list[Block], downcast=None) -> list[Block]:
if downcast is False:
return blocks
if self.dtype == _dtype_obj:
# GH#44241 We downcast regardless of the argument;
# respecting 'downcast=None' may be worthwhile at some point,
# but ATM it breaks too much existing code.
# split and convert the blocks
return extend_blocks(
[blk.convert(datetime=True, numeric=False) for blk in blocks]
)
if downcast is None:
return blocks
return extend_blocks([b._downcast_2d(downcast) for b in blocks])
@final
@maybe_split
def _downcast_2d(self, dtype) -> list[Block]:
"""
downcast specialized to 2D case post-validation.
Refactored to allow use of maybe_split.
"""
new_values = maybe_downcast_to_dtype(self.values, dtype=dtype)
return [self.make_block(new_values)]
def convert(
self,
copy: bool = True,
datetime: bool = True,
numeric: bool = True,
timedelta: bool = True,
) -> list[Block]:
"""
attempt to coerce any object types to better types return a copy
of the block (if copy = True) by definition we are not an ObjectBlock
here!
"""
return [self.copy()] if copy else [self]
# ---------------------------------------------------------------------
# Array-Like Methods
@cache_readonly
def dtype(self) -> DtypeObj:
return self.values.dtype
@final
def astype(
self, dtype: DtypeObj, copy: bool = False, errors: IgnoreRaise = "raise"
) -> Block:
"""
Coerce to the new dtype.
Parameters
----------
dtype : np.dtype or ExtensionDtype
copy : bool, default False
copy if indicated
errors : str, {'raise', 'ignore'}, default 'raise'
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object
Returns
-------
Block
"""
values = self.values
new_values = astype_array_safe(values, dtype, copy=copy, errors=errors)
new_values = maybe_coerce_values(new_values)
newb = self.make_block(new_values)
if newb.shape != self.shape:
raise TypeError(
f"cannot set astype for copy = [{copy}] for dtype "
f"({self.dtype.name} [{self.shape}]) to different shape "
f"({newb.dtype.name} [{newb.shape}])"
)
return newb
@final
def to_native_types(self, na_rep="nan", quoting=None, **kwargs) -> Block:
"""convert to our native types format"""
result = to_native_types(self.values, na_rep=na_rep, quoting=quoting, **kwargs)
return self.make_block(result)
@final
def copy(self, deep: bool = True) -> Block:
"""copy constructor"""
values = self.values
if deep:
values = values.copy()
return type(self)(values, placement=self._mgr_locs, ndim=self.ndim)
# ---------------------------------------------------------------------
# Replace
@final
def replace(
self,
to_replace,
value,
inplace: bool = False,
# mask may be pre-computed if we're called from replace_list
mask: npt.NDArray[np.bool_] | None = None,
) -> list[Block]:
"""
replace the to_replace value with value, possible to create new
blocks here this is just a call to putmask.
"""
# Note: the checks we do in NDFrame.replace ensure we never get
# here with listlike to_replace or value, as those cases
# go through replace_list
values = self.values
if isinstance(values, Categorical):
# TODO: avoid special-casing
blk = self if inplace else self.copy()
# error: Item "ExtensionArray" of "Union[ndarray[Any, Any],
# ExtensionArray]" has no attribute "_replace"
blk.values._replace( # type: ignore[union-attr]
to_replace=to_replace, value=value, inplace=True
)
return [blk]
if not self._can_hold_element(to_replace):
# We cannot hold `to_replace`, so we know immediately that
# replacing it is a no-op.
# Note: If to_replace were a list, NDFrame.replace would call
# replace_list instead of replace.
return [self] if inplace else [self.copy()]
if mask is None:
mask = missing.mask_missing(values, to_replace)
if not mask.any():
# Note: we get here with test_replace_extension_other incorrectly
# bc _can_hold_element is incorrect.
return [self] if inplace else [self.copy()]
elif self._can_hold_element(value):
blk = self if inplace else self.copy()
putmask_inplace(blk.values, mask, value)
if not (self.is_object and value is None):
# if the user *explicitly* gave None, we keep None, otherwise
# may downcast to NaN
blocks = blk.convert(numeric=False, copy=False)
else:
blocks = [blk]
return blocks
elif self.ndim == 1 or self.shape[0] == 1:
blk = self.coerce_to_target_dtype(value)
return blk.replace(
to_replace=to_replace,
value=value,
inplace=True,
mask=mask,
)
else:
# split so that we only upcast where necessary
blocks = []
for i, nb in enumerate(self._split()):
blocks.extend(
type(self).replace(
nb,
to_replace=to_replace,
value=value,
inplace=True,
mask=mask[i : i + 1],
)
)
return blocks
@final
def _replace_regex(
self,
to_replace,
value,
inplace: bool = False,
convert: bool = True,
mask=None,
) -> list[Block]:
"""
Replace elements by the given value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
inplace : bool, default False
Perform inplace modification.
convert : bool, default True
If true, try to coerce any object types to better types.
mask : array-like of bool, optional
True indicate corresponding element is ignored.
Returns
-------
List[Block]
"""
if not self._can_hold_element(to_replace):
# i.e. only ObjectBlock, but could in principle include a
# String ExtensionBlock
return [self] if inplace else [self.copy()]
rx = re.compile(to_replace)
new_values = self.values if inplace else self.values.copy()
replace_regex(new_values, rx, value, mask)
block = self.make_block(new_values)
return block.convert(numeric=False, copy=False)
@final
def replace_list(
self,
src_list: Iterable[Any],
dest_list: Sequence[Any],
inplace: bool = False,
regex: bool = False,
) -> list[Block]:
"""
See BlockManager.replace_list docstring.
"""
values = self.values
# Exclude anything that we know we won't contain
pairs = [
(x, y) for x, y in zip(src_list, dest_list) if self._can_hold_element(x)
]
if not len(pairs):
# shortcut, nothing to replace
return [self] if inplace else [self.copy()]
src_len = len(pairs) - 1
if is_string_dtype(values.dtype):
# Calculate the mask once, prior to the call of comp
# in order to avoid repeating the same computations
mask = ~isna(values)
masks = [
compare_or_regex_search(values, s[0], regex=regex, mask=mask)
for s in pairs
]
else:
# GH#38086 faster if we know we dont need to check for regex
masks = [missing.mask_missing(values, s[0]) for s in pairs]
# error: Argument 1 to "extract_bool_array" has incompatible type
# "Union[ExtensionArray, ndarray, bool]"; expected "Union[ExtensionArray,
# ndarray]"
masks = [extract_bool_array(x) for x in masks] # type: ignore[arg-type]
rb = [self if inplace else self.copy()]
for i, (src, dest) in enumerate(pairs):
convert = i == src_len # only convert once at the end
new_rb: list[Block] = []
# GH-39338: _replace_coerce can split a block into
# single-column blocks, so track the index so we know
# where to index into the mask
for blk_num, blk in enumerate(rb):
if len(rb) == 1:
m = masks[i]
else:
mib = masks[i]
assert not isinstance(mib, bool)
m = mib[blk_num : blk_num + 1]
# error: Argument "mask" to "_replace_coerce" of "Block" has
# incompatible type "Union[ExtensionArray, ndarray[Any, Any], bool]";
# expected "ndarray[Any, dtype[bool_]]"
result = blk._replace_coerce(
to_replace=src,
value=dest,
mask=m, # type: ignore[arg-type]
inplace=inplace,
regex=regex,
)
if convert and blk.is_object and not all(x is None for x in dest_list):
# GH#44498 avoid unwanted cast-back
result = extend_blocks(
[b.convert(numeric=False, copy=True) for b in result]
)
new_rb.extend(result)
rb = new_rb
return rb
@final
def _replace_coerce(
self,
to_replace,
value,
mask: npt.NDArray[np.bool_],
inplace: bool = True,
regex: bool = False,
) -> list[Block]:
"""
Replace value corresponding to the given boolean array with another
value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
mask : np.ndarray[bool]
True indicate corresponding element is ignored.
inplace : bool, default True
Perform inplace modification.
regex : bool, default False
If true, perform regular expression substitution.
Returns
-------
List[Block]
"""
if should_use_regex(regex, to_replace):
return self._replace_regex(
to_replace,
value,
inplace=inplace,
convert=False,
mask=mask,
)
else:
if value is None:
# gh-45601, gh-45836, gh-46634
if mask.any():
nb = self.astype(np.dtype(object), copy=False)
if nb is self and not inplace:
nb = nb.copy()
putmask_inplace(nb.values, mask, value)
return [nb]
return [self] if inplace else [self.copy()]
return self.replace(
to_replace=to_replace, value=value, inplace=inplace, mask=mask
)
# ---------------------------------------------------------------------
# 2D Methods - Shared by NumpyBlock and NDArrayBackedExtensionBlock
# but not ExtensionBlock
def _maybe_squeeze_arg(self, arg: np.ndarray) -> np.ndarray:
"""
For compatibility with 1D-only ExtensionArrays.
"""
return arg
def _unwrap_setitem_indexer(self, indexer):
"""
For compatibility with 1D-only ExtensionArrays.
"""
return indexer
# NB: this cannot be made cache_readonly because in mgr.set_values we pin
# new .values that can have different shape GH#42631
@property
def shape(self) -> Shape:
return self.values.shape
def iget(self, i: int | tuple[int, int] | tuple[slice, int]) -> np.ndarray:
# In the case where we have a tuple[slice, int], the slice will always
# be slice(None)
# Note: only reached with self.ndim == 2
# Invalid index type "Union[int, Tuple[int, int], Tuple[slice, int]]"
# for "Union[ndarray[Any, Any], ExtensionArray]"; expected type
# "Union[int, integer[Any]]"
return self.values[i] # type: ignore[index]
def _slice(
self, slicer: slice | npt.NDArray[np.bool_] | npt.NDArray[np.intp]
) -> ArrayLike:
"""return a slice of my values"""
return self.values[slicer]
def set_inplace(self, locs, values: ArrayLike, copy: bool = False) -> None:
"""
Modify block values in-place with new item value.
If copy=True, first copy the underlying values in place before modifying
(for Copy-on-Write).
Notes
-----
`set_inplace` never creates a new array or new Block, whereas `setitem`
_may_ create a new array and always creates a new Block.
Caller is responsible for checking values.dtype == self.dtype.
"""
if copy:
self.values = self.values.copy()
self.values[locs] = values
def take_nd(
self,
indexer: npt.NDArray[np.intp],
axis: int,
new_mgr_locs: BlockPlacement | None = None,
fill_value=lib.no_default,
) -> Block:
"""
Take values according to indexer and return them as a block.
"""
values = self.values
if fill_value is lib.no_default:
fill_value = self.fill_value
allow_fill = False
else:
allow_fill = True
# Note: algos.take_nd has upcast logic similar to coerce_to_target_dtype
new_values = algos.take_nd(
values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value
)
# Called from three places in managers, all of which satisfy
# this assertion
assert not (axis == 0 and new_mgr_locs is None)
if new_mgr_locs is None:
new_mgr_locs = self._mgr_locs
if not is_dtype_equal(new_values.dtype, self.dtype):
return self.make_block(new_values, new_mgr_locs)
else:
return self.make_block_same_class(new_values, new_mgr_locs)
def _unstack(
self,
unstacker,
fill_value,
new_placement: npt.NDArray[np.intp],
needs_masking: npt.NDArray[np.bool_],
):
"""
Return a list of unstacked blocks of self
Parameters
----------
unstacker : reshape._Unstacker
fill_value : int
Only used in ExtensionBlock._unstack
new_placement : np.ndarray[np.intp]
allow_fill : bool
needs_masking : np.ndarray[bool]
Returns
-------
blocks : list of Block
New blocks of unstacked values.
mask : array-like of bool
The mask of columns of `blocks` we should keep.
"""
new_values, mask = unstacker.get_new_values(
self.values.T, fill_value=fill_value
)
mask = mask.any(0)
# TODO: in all tests we have mask.all(); can we rely on that?
# Note: these next two lines ensure that
# mask.sum() == sum(len(nb.mgr_locs) for nb in blocks)
# which the calling function needs in order to pass verify_integrity=False
# to the BlockManager constructor
new_values = new_values.T[mask]
new_placement = new_placement[mask]
bp = BlockPlacement(new_placement)
blocks = [new_block_2d(new_values, placement=bp)]
return blocks, mask
# ---------------------------------------------------------------------
def setitem(self, indexer, value) -> Block:
"""
Attempt self.values[indexer] = value, possibly creating a new array.
Parameters
----------
indexer : tuple, list-like, array-like, slice, int
The subset of self.values to set
value : object
The value being set
Returns
-------
Block
Notes
-----
`indexer` is a direct slice/positional indexer. `value` must
be a compatible shape.
"""
value = self._standardize_fill_value(value)
values = cast(np.ndarray, self.values)
if self.ndim == 2:
values = values.T
# length checking
check_setitem_lengths(indexer, value, values)
value = extract_array(value, extract_numpy=True)
try:
casted = np_can_hold_element(values.dtype, value)
except LossySetitemError:
# current dtype cannot store value, coerce to common dtype
nb = self.coerce_to_target_dtype(value)
return nb.setitem(indexer, value)
else:
if self.dtype == _dtype_obj:
# TODO: avoid having to construct values[indexer]
vi = values[indexer]
if lib.is_list_like(vi):
# checking lib.is_scalar here fails on
# test_iloc_setitem_custom_object
casted = setitem_datetimelike_compat(values, len(vi), casted)
values[indexer] = casted
return self
def putmask(self, mask, new) -> list[Block]:
"""
putmask the data to the block; it is possible that we may create a
new dtype of block
Return the resulting block(s).
Parameters
----------
mask : np.ndarray[bool], SparseArray[bool], or BooleanArray
new : a ndarray/object
Returns