forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign.py
183 lines (142 loc) · 5.65 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Core eval alignment algorithms
"""
import warnings
from functools import partial, wraps
from pandas.compat import zip, range
import numpy as np
import pandas as pd
from pandas import compat
import pandas.core.common as com
from pandas.computation.common import _result_type_many
def _align_core_single_unary_op(term):
if isinstance(term.value, np.ndarray):
typ = partial(np.asanyarray, dtype=term.value.dtype)
else:
typ = type(term.value)
ret = typ,
if not hasattr(term.value, 'axes'):
ret += None,
else:
ret += _zip_axes_from_type(typ, term.value.axes),
return ret
def _zip_axes_from_type(typ, new_axes):
axes = {}
for ax_ind, ax_name in compat.iteritems(typ._AXIS_NAMES):
axes[ax_name] = new_axes[ax_ind]
return axes
def _any_pandas_objects(terms):
"""Check a sequence of terms for instances of PandasObject."""
return any(isinstance(term.value, pd.core.generic.PandasObject)
for term in terms)
def _filter_special_cases(f):
@wraps(f)
def wrapper(terms):
# single unary operand
if len(terms) == 1:
return _align_core_single_unary_op(terms[0])
term_values = (term.value for term in terms)
# we don't have any pandas objects
if not _any_pandas_objects(terms):
return _result_type_many(*term_values), None
return f(terms)
return wrapper
@_filter_special_cases
def _align_core(terms):
term_index = [i for i, term in enumerate(terms)
if hasattr(term.value, 'axes')]
term_dims = [terms[i].value.ndim for i in term_index]
ndims = pd.Series(dict(zip(term_index, term_dims)))
# initial axes are the axes of the largest-axis'd term
biggest = terms[ndims.idxmax()].value
typ = biggest._constructor
axes = biggest.axes
naxes = len(axes)
gt_than_one_axis = naxes > 1
for value in (terms[i].value for i in term_index):
is_series = isinstance(value, pd.Series)
is_series_and_gt_one_axis = is_series and gt_than_one_axis
for axis, items in enumerate(value.axes):
if is_series_and_gt_one_axis:
ax, itm = naxes - 1, value.index
else:
ax, itm = axis, items
if not axes[ax].is_(itm):
axes[ax] = axes[ax].join(itm, how='outer')
for i, ndim in compat.iteritems(ndims):
for axis, items in zip(range(ndim), axes):
ti = terms[i].value
if hasattr(ti, 'reindex_axis'):
transpose = isinstance(ti, pd.Series) and naxes > 1
reindexer = axes[naxes - 1] if transpose else items
term_axis_size = len(ti.axes[axis])
reindexer_size = len(reindexer)
ordm = np.log10(abs(reindexer_size - term_axis_size))
if ordm >= 1 and reindexer_size >= 10000:
warnings.warn('Alignment difference on axis {0} is larger '
'than an order of magnitude on term {1!r}, '
'by more than {2:.4g}; performance may '
'suffer'.format(axis, terms[i].name, ordm),
category=pd.io.common.PerformanceWarning,
stacklevel=6)
if transpose:
f = partial(ti.reindex, index=reindexer, copy=False)
else:
f = partial(ti.reindex_axis, reindexer, axis=axis,
copy=False)
terms[i].update(f())
terms[i].update(terms[i].value.values)
return typ, _zip_axes_from_type(typ, axes)
def _align(terms):
"""Align a set of terms"""
try:
# flatten the parse tree (a nested list, really)
terms = list(com.flatten(terms))
except TypeError:
# can't iterate so it must just be a constant or single variable
if isinstance(terms.value, pd.core.generic.NDFrame):
typ = type(terms.value)
return typ, _zip_axes_from_type(typ, terms.value.axes)
return np.result_type(terms.type), None
# if all resolved variables are numeric scalars
if all(term.isscalar for term in terms):
return _result_type_many(*(term.value for term in terms)).type, None
# perform the main alignment
typ, axes = _align_core(terms)
return typ, axes
def _reconstruct_object(typ, obj, axes, dtype):
"""Reconstruct an object given its type, raw value, and possibly empty
(None) axes.
Parameters
----------
typ : object
A type
obj : object
The value to use in the type constructor
axes : dict
The axes to use to construct the resulting pandas object
Returns
-------
ret : typ
An object of type ``typ`` with the value `obj` and possible axes
`axes`.
"""
try:
typ = typ.type
except AttributeError:
pass
res_t = np.result_type(obj.dtype, dtype)
if (not isinstance(typ, partial) and
issubclass(typ, pd.core.generic.PandasObject)):
return typ(obj, dtype=res_t, **axes)
# special case for pathological things like ~True/~False
if hasattr(res_t, 'type') and typ == np.bool_ and res_t != np.bool_:
ret_value = res_t.type(obj)
else:
ret_value = typ(obj).astype(res_t)
# The condition is to distinguish 0-dim array (returned in case of scalar)
# and 1 element array
# e.g. np.array(0) and np.array([0])
if len(obj.shape) == 1 and len(obj) == 1:
if not isinstance(ret_value, np.ndarray):
ret_value = np.array([ret_value]).astype(res_t)
return ret_value