forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboolean.py
902 lines (729 loc) · 27.9 KB
/
boolean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import numbers
from typing import TYPE_CHECKING, Any, Tuple, Type
import warnings
import numpy as np
from pandas._libs import lib, missing as libmissing
from pandas.compat import set_function_name
from pandas.compat.numpy import function as nv
from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.cast import astype_nansafe
from pandas.core.dtypes.common import (
is_bool_dtype,
is_extension_array_dtype,
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
is_list_like,
is_scalar,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import register_extension_dtype
from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries
from pandas.core.dtypes.missing import isna, notna
from pandas.core import nanops, ops
from pandas.core.algorithms import take
from pandas.core.arrays import ExtensionArray, ExtensionOpsMixin
if TYPE_CHECKING:
from pandas._typing import Scalar
@register_extension_dtype
class BooleanDtype(ExtensionDtype):
"""
Extension dtype for boolean data.
.. versionadded:: 1.0.0
.. warning::
BooleanDtype is considered experimental. The implementation and
parts of the API may change without warning.
Attributes
----------
None
Methods
-------
None
Examples
--------
>>> pd.BooleanDtype()
BooleanDtype
"""
@property
def na_value(self) -> "Scalar":
"""
BooleanDtype uses :attr:`pandas.NA` as the missing NA value.
.. warning::
`na_value` may change in a future release.
"""
return libmissing.NA
@property
def type(self) -> Type:
return np.bool_
@property
def kind(self) -> str:
return "b"
@property
def name(self) -> str:
"""
The alias for BooleanDtype is ``'boolean'``.
"""
return "boolean"
@classmethod
def construct_from_string(cls, string: str) -> ExtensionDtype:
if string == "boolean":
return cls()
return super().construct_from_string(string)
@classmethod
def construct_array_type(cls) -> "Type[BooleanArray]":
return BooleanArray
def __repr__(self) -> str:
return "BooleanDtype"
@property
def _is_boolean(self) -> bool:
return True
def coerce_to_array(values, mask=None, copy: bool = False):
"""
Coerce the input values array to numpy arrays with a mask.
Parameters
----------
values : 1D list-like
mask : bool 1D array, optional
copy : bool, default False
if True, copy the input
Returns
-------
tuple of (values, mask)
"""
if isinstance(values, BooleanArray):
if mask is not None:
raise ValueError("cannot pass mask for BooleanArray input")
values, mask = values._data, values._mask
if copy:
values = values.copy()
mask = mask.copy()
return values, mask
mask_values = None
if isinstance(values, np.ndarray) and values.dtype == np.bool_:
if copy:
values = values.copy()
else:
# TODO conversion from integer/float ndarray can be done more efficiently
# (avoid roundtrip through object)
values_object = np.asarray(values, dtype=object)
inferred_dtype = lib.infer_dtype(values_object, skipna=True)
integer_like = ("floating", "integer", "mixed-integer-float")
if inferred_dtype not in ("boolean", "empty") + integer_like:
raise TypeError("Need to pass bool-like values")
mask_values = isna(values_object)
values = np.zeros(len(values), dtype=bool)
values[~mask_values] = values_object[~mask_values].astype(bool)
# if the values were integer-like, validate it were actually 0/1's
if inferred_dtype in integer_like:
if not np.all(
values[~mask_values].astype(float)
== values_object[~mask_values].astype(float)
):
raise TypeError("Need to pass bool-like values")
if mask is None and mask_values is None:
mask = np.zeros(len(values), dtype=bool)
elif mask is None:
mask = mask_values
else:
if isinstance(mask, np.ndarray) and mask.dtype == np.bool_:
if mask_values is not None:
mask = mask | mask_values
else:
if copy:
mask = mask.copy()
else:
mask = np.array(mask, dtype=bool)
if mask_values is not None:
mask = mask | mask_values
if not values.ndim == 1:
raise ValueError("values must be a 1D list-like")
if not mask.ndim == 1:
raise ValueError("mask must be a 1D list-like")
return values, mask
class BooleanArray(ExtensionArray, ExtensionOpsMixin):
"""
Array of boolean (True/False) data with missing values.
This is a pandas Extension array for boolean data, under the hood
represented by 2 numpy arrays: a boolean array with the data and
a boolean array with the mask (True indicating missing).
BooleanArray implements Kleene logic (sometimes called three-value
logic) for logical operations. See :ref:`boolean.kleene` for more.
To construct an BooleanArray from generic array-like input, use
:func:`pandas.array` specifying ``dtype="boolean"`` (see examples
below).
.. versionadded:: 1.0.0
.. warning::
BooleanArray is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
values : numpy.ndarray
A 1-d boolean-dtype array with the data.
mask : numpy.ndarray
A 1-d boolean-dtype array indicating missing values (True
indicates missing).
copy : bool, default False
Whether to copy the `values` and `mask` arrays.
Attributes
----------
None
Methods
-------
None
Returns
-------
BooleanArray
Examples
--------
Create an BooleanArray with :func:`pandas.array`:
>>> pd.array([True, False, None], dtype="boolean")
<BooleanArray>
[True, False, NA]
Length: 3, dtype: boolean
"""
def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False):
if not (isinstance(values, np.ndarray) and values.dtype == np.bool_):
raise TypeError(
"values should be boolean numpy array. Use "
"the 'array' function instead"
)
if not (isinstance(mask, np.ndarray) and mask.dtype == np.bool_):
raise TypeError(
"mask should be boolean numpy array. Use "
"the 'array' function instead"
)
if not values.ndim == 1:
raise ValueError("values must be a 1D array")
if not mask.ndim == 1:
raise ValueError("mask must be a 1D array")
if copy:
values = values.copy()
mask = mask.copy()
self._data = values
self._mask = mask
self._dtype = BooleanDtype()
@property
def dtype(self):
return self._dtype
@classmethod
def _from_sequence(cls, scalars, dtype=None, copy: bool = False):
if dtype:
assert dtype == "boolean"
values, mask = coerce_to_array(scalars, copy=copy)
return BooleanArray(values, mask)
def _values_for_factorize(self) -> Tuple[np.ndarray, Any]:
data = self._data.astype("int8")
data[self._mask] = -1
return data, -1
@classmethod
def _from_factorized(cls, values, original: "BooleanArray"):
return cls._from_sequence(values, dtype=original.dtype)
def _formatter(self, boxed=False):
return str
def __getitem__(self, item):
if is_integer(item):
if self._mask[item]:
return self.dtype.na_value
return self._data[item]
return type(self)(self._data[item], self._mask[item])
def _coerce_to_ndarray(self, dtype=None, na_value: "Scalar" = libmissing.NA):
"""
Coerce to an ndarray of object dtype or bool dtype (if force_bool=True).
Parameters
----------
dtype : dtype, default object
The numpy dtype to convert to
na_value : scalar, optional
Scalar missing value indicator to use in numpy array. Defaults
to the native missing value indicator of this array (pd.NA).
"""
if dtype is None:
dtype = object
if is_bool_dtype(dtype):
if not self.isna().any():
return self._data
else:
raise ValueError(
"cannot convert to bool numpy array in presence of missing values"
)
data = self._data.astype(dtype)
data[self._mask] = na_value
return data
__array_priority__ = 1000 # higher than ndarray so ops dispatch to us
def __array__(self, dtype=None):
"""
the array interface, return my values
We return an object array here to preserve our scalar values
"""
# by default (no dtype specified), return an object array
return self._coerce_to_ndarray(dtype=dtype)
def __arrow_array__(self, type=None):
"""
Convert myself into a pyarrow Array.
"""
import pyarrow as pa
return pa.array(self._data, mask=self._mask, type=type)
_HANDLED_TYPES = (np.ndarray, numbers.Number, bool, np.bool_)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
# For BooleanArray inputs, we apply the ufunc to ._data
# and mask the result.
if method == "reduce":
# Not clear how to handle missing values in reductions. Raise.
raise NotImplementedError("The 'reduce' method is not supported.")
out = kwargs.get("out", ())
for x in inputs + out:
if not isinstance(x, self._HANDLED_TYPES + (BooleanArray,)):
return NotImplemented
# for binary ops, use our custom dunder methods
result = ops.maybe_dispatch_ufunc_to_dunder_op(
self, ufunc, method, *inputs, **kwargs
)
if result is not NotImplemented:
return result
mask = np.zeros(len(self), dtype=bool)
inputs2 = []
for x in inputs:
if isinstance(x, BooleanArray):
mask |= x._mask
inputs2.append(x._data)
else:
inputs2.append(x)
def reconstruct(x):
# we don't worry about scalar `x` here, since we
# raise for reduce up above.
if is_bool_dtype(x.dtype):
m = mask.copy()
return BooleanArray(x, m)
else:
x[mask] = np.nan
return x
result = getattr(ufunc, method)(*inputs2, **kwargs)
if isinstance(result, tuple):
tuple(reconstruct(x) for x in result)
else:
return reconstruct(result)
def __iter__(self):
for i in range(len(self)):
if self._mask[i]:
yield self.dtype.na_value
else:
yield self._data[i]
def take(self, indexer, allow_fill=False, fill_value=None):
# we always fill with False internally
# to avoid upcasting
data_fill_value = False if isna(fill_value) else fill_value
result = take(
self._data, indexer, fill_value=data_fill_value, allow_fill=allow_fill
)
mask = take(self._mask, indexer, fill_value=True, allow_fill=allow_fill)
# if we are filling
# we only fill where the indexer is null
# not existing missing values
# TODO(jreback) what if we have a non-na float as a fill value?
if allow_fill and notna(fill_value):
fill_mask = np.asarray(indexer) == -1
result[fill_mask] = fill_value
mask = mask ^ fill_mask
return type(self)(result, mask, copy=False)
def copy(self):
data, mask = self._data, self._mask
data = data.copy()
mask = mask.copy()
return type(self)(data, mask, copy=False)
def __setitem__(self, key, value):
_is_scalar = is_scalar(value)
if _is_scalar:
value = [value]
value, mask = coerce_to_array(value)
if _is_scalar:
value = value[0]
mask = mask[0]
self._data[key] = value
self._mask[key] = mask
def __len__(self):
return len(self._data)
@property
def nbytes(self):
return self._data.nbytes + self._mask.nbytes
def isna(self):
return self._mask
@property
def _na_value(self):
return self._dtype.na_value
@classmethod
def _concat_same_type(cls, to_concat):
data = np.concatenate([x._data for x in to_concat])
mask = np.concatenate([x._mask for x in to_concat])
return cls(data, mask)
def astype(self, dtype, copy=True):
"""
Cast to a NumPy array or ExtensionArray with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
array : ndarray or ExtensionArray
NumPy ndarray, BooleanArray or IntergerArray with 'dtype' for its dtype.
Raises
------
TypeError
if incompatible type with an BooleanDtype, equivalent of same_kind
casting
"""
dtype = pandas_dtype(dtype)
if isinstance(dtype, BooleanDtype):
values, mask = coerce_to_array(self, copy=copy)
return BooleanArray(values, mask, copy=False)
if is_bool_dtype(dtype):
# astype_nansafe converts np.nan to True
if self.isna().any():
raise ValueError("cannot convert float NaN to bool")
else:
return self._data.astype(dtype, copy=copy)
if is_extension_array_dtype(dtype) and is_integer_dtype(dtype):
from pandas.core.arrays import IntegerArray
return IntegerArray(
self._data.astype(dtype.numpy_dtype), self._mask.copy(), copy=False
)
# for integer, error if there are missing values
if is_integer_dtype(dtype):
if self.isna().any():
raise ValueError("cannot convert NA to integer")
# for float dtype, ensure we use np.nan before casting (numpy cannot
# deal with pd.NA)
na_value = self._na_value
if is_float_dtype(dtype):
na_value = np.nan
# coerce
data = self._coerce_to_ndarray(na_value=na_value)
return astype_nansafe(data, dtype, copy=None)
def value_counts(self, dropna=True):
"""
Returns a Series containing counts of each category.
Every category will have an entry, even those with a count of 0.
Parameters
----------
dropna : bool, default True
Don't include counts of NaN.
Returns
-------
counts : Series
See Also
--------
Series.value_counts
"""
from pandas import Index, Series
# compute counts on the data with no nans
data = self._data[~self._mask]
value_counts = Index(data).value_counts()
array = value_counts.values
# TODO(extension)
# if we have allow Index to hold an ExtensionArray
# this is easier
index = value_counts.index.values.astype(bool).astype(object)
# if we want nans, count the mask
if not dropna:
# TODO(extension)
# appending to an Index *always* infers
# w/o passing the dtype
array = np.append(array, [self._mask.sum()])
index = Index(
np.concatenate([index, np.array([np.nan], dtype=object)]), dtype=object
)
return Series(array, index=index)
def _values_for_argsort(self) -> np.ndarray:
"""
Return values for sorting.
Returns
-------
ndarray
The transformed values should maintain the ordering between values
within the array.
See Also
--------
ExtensionArray.argsort
"""
data = self._data.copy()
data[self._mask] = -1
return data
def any(self, skipna=True, **kwargs):
"""
Return whether any element is True.
Returns False unless there is at least one element that is True.
By default, NAs are skipped. If ``skipna=False`` is specified and
missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
is used as for logical operations.
Parameters
----------
skipna : bool, default True
Exclude NA values. If the entire array is NA and `skipna` is
True, then the result will be False, as for an empty array.
If `skipna` is False, the result will still be True if there is
at least one element that is True, otherwise NA will be returned
if there are NA's present.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
bool or :attr:`pandas.NA`
See Also
--------
numpy.any : Numpy version of this method.
BooleanArray.all : Return whether all elements are True.
Examples
--------
The result indicates whether any element is True (and by default
skips NAs):
>>> pd.array([True, False, True]).any()
True
>>> pd.array([True, False, pd.NA]).any()
True
>>> pd.array([False, False, pd.NA]).any()
False
>>> pd.array([], dtype="boolean").any()
False
>>> pd.array([pd.NA], dtype="boolean").any()
False
With ``skipna=False``, the result can be NA if this is logically
required (whether ``pd.NA`` is True or False influences the result):
>>> pd.array([True, False, pd.NA]).any(skipna=False)
True
>>> pd.array([False, False, pd.NA]).any(skipna=False)
NA
"""
kwargs.pop("axis", None)
nv.validate_any((), kwargs)
values = self._data.copy()
np.putmask(values, self._mask, False)
result = values.any()
if skipna:
return result
else:
if result or len(self) == 0:
return result
else:
return self.dtype.na_value
def all(self, skipna=True, **kwargs):
"""
Return whether all elements are True.
Returns True unless there is at least one element that is False.
By default, NAs are skipped. If ``skipna=False`` is specified and
missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
is used as for logical operations.
Parameters
----------
skipna : bool, default True
Exclude NA values. If the entire array is NA and `skipna` is
True, then the result will be True, as for an empty array.
If `skipna` is False, the result will still be False if there is
at least one element that is False, otherwise NA will be returned
if there are NA's present.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
bool or :attr:`pandas.NA`
See Also
--------
numpy.all : Numpy version of this method.
BooleanArray.any : Return whether any element is True.
Examples
--------
The result indicates whether any element is True (and by default
skips NAs):
>>> pd.array([True, True, pd.NA]).all()
True
>>> pd.array([True, False, pd.NA]).all()
False
>>> pd.array([], dtype="boolean").all()
True
>>> pd.array([pd.NA], dtype="boolean").all()
True
With ``skipna=False``, the result can be NA if this is logically
required (whether ``pd.NA`` is True or False influences the result):
>>> pd.array([True, True, pd.NA]).all(skipna=False)
NA
>>> pd.array([True, False, pd.NA]).all(skipna=False)
False
"""
kwargs.pop("axis", None)
nv.validate_all((), kwargs)
values = self._data.copy()
np.putmask(values, self._mask, True)
result = values.all()
if skipna:
return result
else:
if not result or len(self) == 0:
return result
else:
return self.dtype.na_value
@classmethod
def _create_logical_method(cls, op):
def logical_method(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
# Rely on pandas to unbox and dispatch to us.
return NotImplemented
assert op.__name__ in {"or_", "ror_", "and_", "rand_", "xor", "rxor"}
other = lib.item_from_zerodim(other)
other_is_booleanarray = isinstance(other, BooleanArray)
other_is_scalar = lib.is_scalar(other)
mask = None
if other_is_booleanarray:
other, mask = other._data, other._mask
elif is_list_like(other):
other = np.asarray(other, dtype="bool")
if other.ndim > 1:
raise NotImplementedError(
"can only perform ops with 1-d structures"
)
other, mask = coerce_to_array(other, copy=False)
elif isinstance(other, np.bool_):
other = other.item()
if other_is_scalar and not (other is libmissing.NA or lib.is_bool(other)):
raise TypeError(
"'other' should be pandas.NA or a bool. Got {} instead.".format(
type(other).__name__
)
)
if not other_is_scalar and len(self) != len(other):
raise ValueError("Lengths must match to compare")
if op.__name__ in {"or_", "ror_"}:
result, mask = ops.kleene_or(self._data, other, self._mask, mask)
elif op.__name__ in {"and_", "rand_"}:
result, mask = ops.kleene_and(self._data, other, self._mask, mask)
elif op.__name__ in {"xor", "rxor"}:
result, mask = ops.kleene_xor(self._data, other, self._mask, mask)
return BooleanArray(result, mask)
name = "__{name}__".format(name=op.__name__)
return set_function_name(logical_method, name, cls)
@classmethod
def _create_comparison_method(cls, op):
def cmp_method(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
# Rely on pandas to unbox and dispatch to us.
return NotImplemented
other = lib.item_from_zerodim(other)
mask = None
if isinstance(other, BooleanArray):
other, mask = other._data, other._mask
elif is_list_like(other):
other = np.asarray(other)
if other.ndim > 1:
raise NotImplementedError(
"can only perform ops with 1-d structures"
)
if len(self) != len(other):
raise ValueError("Lengths must match to compare")
if other is libmissing.NA:
# numpy does not handle pd.NA well as "other" scalar (it returns
# a scalar False instead of an array)
result = np.zeros_like(self._data)
mask = np.ones_like(self._data)
else:
# numpy will show a DeprecationWarning on invalid elementwise
# comparisons, this will raise in the future
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "elementwise", FutureWarning)
with np.errstate(all="ignore"):
result = op(self._data, other)
# nans propagate
if mask is None:
mask = self._mask.copy()
else:
mask = self._mask | mask
return BooleanArray(result, mask, copy=False)
name = "__{name}__".format(name=op.__name__)
return set_function_name(cmp_method, name, cls)
def _reduce(self, name, skipna=True, **kwargs):
if name in {"any", "all"}:
return getattr(self, name)(skipna=skipna, **kwargs)
data = self._data
mask = self._mask
# coerce to a nan-aware float if needed
if mask.any():
data = self._data.astype("float64")
data[mask] = np.nan
op = getattr(nanops, "nan" + name)
result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs)
# if we have numeric op that would result in an int, coerce to int if possible
if name in ["sum", "prod"] and notna(result):
int_result = np.int64(result)
if int_result == result:
result = int_result
elif name in ["min", "max"] and notna(result):
result = np.bool_(result)
return result
def _maybe_mask_result(self, result, mask, other, op_name):
"""
Parameters
----------
result : array-like
mask : array-like bool
other : scalar or array-like
op_name : str
"""
# if we have a float operand we are by-definition
# a float result
# or our op is a divide
if (is_float_dtype(other) or is_float(other)) or (
op_name in ["rtruediv", "truediv"]
):
result[mask] = np.nan
return result
if is_bool_dtype(result):
return BooleanArray(result, mask, copy=False)
elif is_integer_dtype(result):
from pandas.core.arrays import IntegerArray
return IntegerArray(result, mask, copy=False)
else:
result[mask] = np.nan
return result
@classmethod
def _create_arithmetic_method(cls, op):
op_name = op.__name__
def boolean_arithmetic_method(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
# Rely on pandas to unbox and dispatch to us.
return NotImplemented
other = lib.item_from_zerodim(other)
mask = None
if isinstance(other, BooleanArray):
other, mask = other._data, other._mask
elif is_list_like(other):
other = np.asarray(other)
if other.ndim > 1:
raise NotImplementedError(
"can only perform ops with 1-d structures"
)
if len(self) != len(other):
raise ValueError("Lengths must match")
# nans propagate
if mask is None:
mask = self._mask
else:
mask = self._mask | mask
with np.errstate(all="ignore"):
result = op(self._data, other)
# divmod returns a tuple
if op_name == "divmod":
div, mod = result
return (
self._maybe_mask_result(div, mask, other, "floordiv"),
self._maybe_mask_result(mod, mask, other, "mod"),
)
return self._maybe_mask_result(result, mask, other, op_name)
name = "__{name}__".format(name=op_name)
return set_function_name(boolean_arithmetic_method, name, cls)
BooleanArray._add_logical_ops()
BooleanArray._add_comparison_ops()
BooleanArray._add_arithmetic_ops()