forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_ops.py
110 lines (74 loc) · 2.94 KB
/
binary_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from .pandas_vb_common import *
import pandas.computation.expressions as expr
class Ops(object):
goal_time = 0.2
params = [[True, False], ['default', 1]]
param_names = ['use_numexpr', 'threads']
def setup(self, use_numexpr, threads):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
if threads != 'default':
expr.set_numexpr_threads(threads)
if not use_numexpr:
expr.set_use_numexpr(False)
def time_frame_add(self, use_numexpr, threads):
(self.df + self.df2)
def time_frame_mult(self, use_numexpr, threads):
(self.df * self.df2)
def time_frame_multi_and(self, use_numexpr, threads):
self.df[((self.df > 0) & (self.df2 > 0))]
def time_frame_comparison(self, use_numexpr, threads):
(self.df > self.df2)
def teardown(self, use_numexpr, threads):
expr.set_use_numexpr(True)
expr.set_numexpr_threads()
class Ops2(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
self.df2 = DataFrame(np.random.randn(1000, 1000))
self.df_int = DataFrame(
np.random.random_integers(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(1000, 1000)))
self.df2_int = DataFrame(
np.random.random_integers(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(1000, 1000)))
## Division
def time_frame_float_div(self):
(self.df // self.df2)
def time_frame_float_div_by_zero(self):
(self.df / 0)
def time_frame_float_floor_by_zero(self):
(self.df // 0)
def time_frame_int_div_by_zero(self):
(self.df_int / 0)
## Modulo
def time_frame_int_mod(self):
(self.df / self.df2)
def time_frame_float_mod(self):
(self.df / self.df2)
class Timeseries(object):
goal_time = 0.2
def setup(self):
self.N = 1000000
self.halfway = ((self.N // 2) - 1)
self.s = Series(date_range('20010101', periods=self.N, freq='T'))
self.ts = self.s[self.halfway]
self.s2 = Series(date_range('20010101', periods=self.N, freq='s'))
def time_series_timestamp_compare(self):
(self.s <= self.ts)
def time_timestamp_series_compare(self):
(self.ts >= self.s)
def time_timestamp_ops_diff1(self):
self.s2.diff()
def time_timestamp_ops_diff2(self):
(self.s - self.s.shift())
class TimeseriesTZ(Timeseries):
def setup(self):
self.N = 1000000
self.halfway = ((self.N // 2) - 1)
self.s = Series(date_range('20010101', periods=self.N, freq='T', tz='US/Eastern'))
self.ts = self.s[self.halfway]
self.s2 = Series(date_range('20010101', periods=self.N, freq='s', tz='US/Eastern'))