forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_reduction.py
123 lines (111 loc) · 4 KB
/
test_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
array,
)
import pandas._testing as tm
@pytest.mark.parametrize(
"op, expected",
[
["sum", np.int64(3)],
["prod", np.int64(2)],
["min", np.int64(1)],
["max", np.int64(2)],
["mean", np.float64(1.5)],
["median", np.float64(1.5)],
["var", np.float64(0.5)],
["std", np.float64(0.5**0.5)],
["skew", pd.NA],
["kurt", pd.NA],
["any", True],
["all", True],
],
)
def test_series_reductions(op, expected):
ser = Series([1, 2], dtype="Int64")
result = getattr(ser, op)()
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"op, expected",
[
["sum", Series([3], index=["a"], dtype="Int64")],
["prod", Series([2], index=["a"], dtype="Int64")],
["min", Series([1], index=["a"], dtype="Int64")],
["max", Series([2], index=["a"], dtype="Int64")],
["mean", Series([1.5], index=["a"], dtype="Float64")],
["median", Series([1.5], index=["a"], dtype="Float64")],
["var", Series([0.5], index=["a"], dtype="Float64")],
["std", Series([0.5**0.5], index=["a"], dtype="Float64")],
["skew", Series([pd.NA], index=["a"], dtype="Float64")],
["kurt", Series([pd.NA], index=["a"], dtype="Float64")],
["any", Series([True], index=["a"], dtype="boolean")],
["all", Series([True], index=["a"], dtype="boolean")],
],
)
def test_dataframe_reductions(op, expected):
df = DataFrame({"a": array([1, 2], dtype="Int64")})
result = getattr(df, op)()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"op, expected",
[
["sum", array([1, 3], dtype="Int64")],
["prod", array([1, 3], dtype="Int64")],
["min", array([1, 3], dtype="Int64")],
["max", array([1, 3], dtype="Int64")],
["mean", array([1, 3], dtype="Float64")],
["median", array([1, 3], dtype="Float64")],
["var", array([pd.NA], dtype="Float64")],
["std", array([pd.NA], dtype="Float64")],
["skew", array([pd.NA], dtype="Float64")],
["any", array([True, True], dtype="boolean")],
["all", array([True, True], dtype="boolean")],
],
)
def test_groupby_reductions(op, expected):
df = DataFrame(
{
"A": ["a", "b", "b"],
"B": array([1, None, 3], dtype="Int64"),
}
)
result = getattr(df.groupby("A"), op)()
expected = DataFrame(expected, index=pd.Index(["a", "b"], name="A"), columns=["B"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op, expected",
[
["sum", Series([4, 4], index=["B", "C"], dtype="Float64")],
["prod", Series([3, 3], index=["B", "C"], dtype="Float64")],
["min", Series([1, 1], index=["B", "C"], dtype="Float64")],
["max", Series([3, 3], index=["B", "C"], dtype="Float64")],
["mean", Series([2, 2], index=["B", "C"], dtype="Float64")],
["median", Series([2, 2], index=["B", "C"], dtype="Float64")],
["var", Series([2, 2], index=["B", "C"], dtype="Float64")],
["std", Series([2**0.5, 2**0.5], index=["B", "C"], dtype="Float64")],
["skew", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
["kurt", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
["any", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
["all", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
],
)
def test_mixed_reductions(op, expected):
df = DataFrame(
{
"A": ["a", "b", "b"],
"B": [1, None, 3],
"C": array([1, None, 3], dtype="Int64"),
}
)
# series
result = getattr(df.C, op)()
tm.assert_equal(result, expected["C"])
# frame
if op in ["any", "all"]:
result = getattr(df, op)()
else:
result = getattr(df, op)(numeric_only=True)
tm.assert_series_equal(result, expected)