forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_decimal.py
370 lines (260 loc) · 11.2 KB
/
test_decimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import operator
import decimal
import numpy as np
import pandas as pd
from pandas import compat
import pandas.util.testing as tm
import pytest
from pandas.tests.extension import base
from .array import DecimalDtype, DecimalArray, make_data, to_decimal
@pytest.fixture
def dtype():
return DecimalDtype()
@pytest.fixture
def data():
return DecimalArray(make_data())
@pytest.fixture
def data_missing():
return DecimalArray([decimal.Decimal('NaN'), decimal.Decimal(1)])
@pytest.fixture
def data_for_sorting():
return DecimalArray([decimal.Decimal('1'),
decimal.Decimal('2'),
decimal.Decimal('0')])
@pytest.fixture
def data_missing_for_sorting():
return DecimalArray([decimal.Decimal('1'),
decimal.Decimal('NaN'),
decimal.Decimal('0')])
@pytest.fixture
def na_cmp():
return lambda x, y: x.is_nan() and y.is_nan()
@pytest.fixture
def na_value():
return decimal.Decimal("NaN")
@pytest.fixture
def data_for_grouping():
b = decimal.Decimal('1.0')
a = decimal.Decimal('0.0')
c = decimal.Decimal('2.0')
na = decimal.Decimal('NaN')
return DecimalArray([b, b, na, na, a, a, b, c])
class BaseDecimal(object):
def assert_series_equal(self, left, right, *args, **kwargs):
left_na = left.isna()
right_na = right.isna()
tm.assert_series_equal(left_na, right_na)
return tm.assert_series_equal(left[~left_na],
right[~right_na],
*args, **kwargs)
def assert_frame_equal(self, left, right, *args, **kwargs):
# TODO(EA): select_dtypes
tm.assert_index_equal(
left.columns, right.columns,
exact=kwargs.get('check_column_type', 'equiv'),
check_names=kwargs.get('check_names', True),
check_exact=kwargs.get('check_exact', False),
check_categorical=kwargs.get('check_categorical', True),
obj='{obj}.columns'.format(obj=kwargs.get('obj', 'DataFrame')))
decimals = (left.dtypes == 'decimal').index
for col in decimals:
self.assert_series_equal(left[col], right[col],
*args, **kwargs)
left = left.drop(columns=decimals)
right = right.drop(columns=decimals)
tm.assert_frame_equal(left, right, *args, **kwargs)
class TestDtype(BaseDecimal, base.BaseDtypeTests):
@pytest.mark.skipif(compat.PY2, reason="Context not hashable.")
def test_hashable(self, dtype):
pass
class TestInterface(BaseDecimal, base.BaseInterfaceTests):
pytestmark = pytest.mark.skipif(compat.PY2,
reason="Unhashble dtype in Py2.")
class TestConstructors(BaseDecimal, base.BaseConstructorsTests):
@pytest.mark.skip(reason="not implemented constructor from dtype")
def test_from_dtype(self, data):
# construct from our dtype & string dtype
pass
class TestReshaping(BaseDecimal, base.BaseReshapingTests):
pytestmark = pytest.mark.skipif(compat.PY2,
reason="Unhashble dtype in Py2.")
class TestGetitem(BaseDecimal, base.BaseGetitemTests):
def test_take_na_value_other_decimal(self):
arr = DecimalArray([decimal.Decimal('1.0'),
decimal.Decimal('2.0')])
result = arr.take([0, -1], allow_fill=True,
fill_value=decimal.Decimal('-1.0'))
expected = DecimalArray([decimal.Decimal('1.0'),
decimal.Decimal('-1.0')])
self.assert_extension_array_equal(result, expected)
class TestMissing(BaseDecimal, base.BaseMissingTests):
pass
class Reduce(object):
def check_reduce(self, s, op_name, skipna):
if skipna or op_name in ['median', 'skew', 'kurt']:
with pytest.raises(NotImplementedError):
getattr(s, op_name)(skipna=skipna)
else:
result = getattr(s, op_name)(skipna=skipna)
expected = getattr(np.asarray(s), op_name)()
tm.assert_almost_equal(result, expected)
class TestNumericReduce(Reduce, base.BaseNumericReduceTests):
pass
class TestBooleanReduce(Reduce, base.BaseBooleanReduceTests):
pass
class TestMethods(BaseDecimal, base.BaseMethodsTests):
@pytest.mark.parametrize('dropna', [True, False])
@pytest.mark.xfail(reason="value_counts not implemented yet.")
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
tm.assert_series_equal(result, expected)
class TestCasting(BaseDecimal, base.BaseCastingTests):
pass
class TestGroupby(BaseDecimal, base.BaseGroupbyTests):
pytestmark = pytest.mark.skipif(compat.PY2,
reason="Unhashble dtype in Py2.")
class TestSetitem(BaseDecimal, base.BaseSetitemTests):
pass
# TODO(extension)
@pytest.mark.xfail(reason=(
"raising AssertionError as this is not implemented, "
"though easy enough to do"))
def test_series_constructor_coerce_data_to_extension_dtype_raises():
xpr = ("Cannot cast data to extension dtype 'decimal'. Pass the "
"extension array directly.")
with tm.assert_raises_regex(ValueError, xpr):
pd.Series([0, 1, 2], dtype=DecimalDtype())
def test_series_constructor_with_dtype():
arr = DecimalArray([decimal.Decimal('10.0')])
result = pd.Series(arr, dtype=DecimalDtype())
expected = pd.Series(arr)
tm.assert_series_equal(result, expected)
result = pd.Series(arr, dtype='int64')
expected = pd.Series([10])
tm.assert_series_equal(result, expected)
def test_dataframe_constructor_with_dtype():
arr = DecimalArray([decimal.Decimal('10.0')])
result = pd.DataFrame({"A": arr}, dtype=DecimalDtype())
expected = pd.DataFrame({"A": arr})
tm.assert_frame_equal(result, expected)
arr = DecimalArray([decimal.Decimal('10.0')])
result = pd.DataFrame({"A": arr}, dtype='int64')
expected = pd.DataFrame({"A": [10]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("frame", [True, False])
def test_astype_dispatches(frame):
# This is a dtype-specific test that ensures Series[decimal].astype
# gets all the way through to ExtensionArray.astype
# Designing a reliable smoke test that works for arbitrary data types
# is difficult.
data = pd.Series(DecimalArray([decimal.Decimal(2)]), name='a')
ctx = decimal.Context()
ctx.prec = 5
if frame:
data = data.to_frame()
result = data.astype(DecimalDtype(ctx))
if frame:
result = result['a']
assert result.dtype.context.prec == ctx.prec
class TestArithmeticOps(BaseDecimal, base.BaseArithmeticOpsTests):
def check_opname(self, s, op_name, other, exc=None):
super(TestArithmeticOps, self).check_opname(s, op_name,
other, exc=None)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
op_name = all_arithmetic_operators
s = pd.Series(data)
context = decimal.getcontext()
divbyzerotrap = context.traps[decimal.DivisionByZero]
invalidoptrap = context.traps[decimal.InvalidOperation]
context.traps[decimal.DivisionByZero] = 0
context.traps[decimal.InvalidOperation] = 0
# Decimal supports ops with int, but not float
other = pd.Series([int(d * 100) for d in data])
self.check_opname(s, op_name, other)
if "mod" not in op_name:
self.check_opname(s, op_name, s * 2)
self.check_opname(s, op_name, 0)
self.check_opname(s, op_name, 5)
context.traps[decimal.DivisionByZero] = divbyzerotrap
context.traps[decimal.InvalidOperation] = invalidoptrap
def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
# We implement divmod
super(TestArithmeticOps, self)._check_divmod_op(
s, op, other, exc=None
)
def test_error(self):
pass
class TestComparisonOps(BaseDecimal, base.BaseComparisonOpsTests):
def check_opname(self, s, op_name, other, exc=None):
super(TestComparisonOps, self).check_opname(s, op_name,
other, exc=None)
def _compare_other(self, s, data, op_name, other):
self.check_opname(s, op_name, other)
def test_compare_scalar(self, data, all_compare_operators):
op_name = all_compare_operators
s = pd.Series(data)
self._compare_other(s, data, op_name, 0.5)
def test_compare_array(self, data, all_compare_operators):
op_name = all_compare_operators
s = pd.Series(data)
alter = np.random.choice([-1, 0, 1], len(data))
# Randomly double, halve or keep same value
other = pd.Series(data) * [decimal.Decimal(pow(2.0, i))
for i in alter]
self._compare_other(s, data, op_name, other)
class TestIndex(base.BaseIndexTests):
pass
class DecimalArrayWithoutFromSequence(DecimalArray):
"""Helper class for testing error handling in _from_sequence."""
def _from_sequence(cls, scalars, dtype=None, copy=False):
raise KeyError("For the test")
class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
@classmethod
def _create_arithmetic_method(cls, op):
return cls._create_method(op, coerce_to_dtype=False)
DecimalArrayWithoutCoercion._add_arithmetic_ops()
def test_combine_from_sequence_raises():
# https://github.com/pandas-dev/pandas/issues/22850
ser = pd.Series(DecimalArrayWithoutFromSequence([
decimal.Decimal("1.0"),
decimal.Decimal("2.0")
]))
result = ser.combine(ser, operator.add)
# note: object dtype
expected = pd.Series([decimal.Decimal("2.0"),
decimal.Decimal("4.0")], dtype="object")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("class_", [DecimalArrayWithoutFromSequence,
DecimalArrayWithoutCoercion])
def test_scalar_ops_from_sequence_raises(class_):
# op(EA, EA) should return an EA, or an ndarray if it's not possible
# to return an EA with the return values.
arr = class_([
decimal.Decimal("1.0"),
decimal.Decimal("2.0")
])
result = arr + arr
expected = np.array([decimal.Decimal("2.0"), decimal.Decimal("4.0")],
dtype="object")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("reverse, expected_div, expected_mod", [
(False, [0, 1, 1, 2], [1, 0, 1, 0]),
(True, [2, 1, 0, 0], [0, 0, 2, 2]),
])
def test_divmod_array(reverse, expected_div, expected_mod):
# https://github.com/pandas-dev/pandas/issues/22930
arr = to_decimal([1, 2, 3, 4])
if reverse:
div, mod = divmod(2, arr)
else:
div, mod = divmod(arr, 2)
expected_div = to_decimal(expected_div)
expected_mod = to_decimal(expected_mod)
tm.assert_extension_array_equal(div, expected_div)
tm.assert_extension_array_equal(mod, expected_mod)