forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_datetime.py
180 lines (142 loc) · 5.21 KB
/
test_datetime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import re
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
class TestDatetimeIndex:
def test_get_loc_naive_dti_aware_str_deprecated(self):
# GH#46903
ts = Timestamp("20130101").value
dti = pd.DatetimeIndex([ts + 50 + i for i in range(100)])
ser = Series(range(100), index=dti)
key = "2013-01-01 00:00:00.000000050+0000"
msg = re.escape(repr(key))
with pytest.raises(KeyError, match=msg):
ser[key]
with pytest.raises(KeyError, match=msg):
dti.get_loc(key)
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
df = DataFrame({"A": idx, "B": dr})
df["C"] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
expected = Series(
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
index=list("ABC"),
dtype="object",
name=1,
)
# indexing
result = df.iloc[1]
tm.assert_series_equal(result, expected)
result = df.loc[1]
tm.assert_series_equal(result, expected)
def test_indexing_fast_xs(self):
# indexing - fast_xs
df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
result = df.iloc[5]
expected = Series(
[Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5
)
tm.assert_series_equal(result, expected)
result = df.loc[5]
tm.assert_series_equal(result, expected)
# indexing - boolean
result = df[df.a > df.a[3]]
expected = df.iloc[4:]
tm.assert_frame_equal(result, expected)
def test_consistency_with_tz_aware_scalar(self):
# xef gh-12938
# various ways of indexing the same tz-aware scalar
df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame()
df = pd.concat([df, df]).reset_index(drop=True)
expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels")
result = df[0][0]
assert result == expected
result = df.iloc[0, 0]
assert result == expected
result = df.loc[0, 0]
assert result == expected
result = df.iat[0, 0]
assert result == expected
result = df.at[0, 0]
assert result == expected
result = df[0].loc[0]
assert result == expected
result = df[0].at[0]
assert result == expected
def test_indexing_with_datetimeindex_tz(self, indexer_sl):
# GH 12050
# indexing on a series with a datetimeindex with tz
index = date_range("2015-01-01", periods=2, tz="utc")
ser = Series(range(2), index=index, dtype="int64")
# list-like indexing
for sel in (index, list(index)):
# getitem
result = indexer_sl(ser)[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# setitem
result = ser.copy()
indexer_sl(result)[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# single element indexing
# getitem
assert indexer_sl(ser)[index[1]] == 1
# setitem
result = ser.copy()
indexer_sl(result)[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
def test_nanosecond_getitem_setitem_with_tz(self):
# GH 11679
data = ["2016-06-28 08:30:00.123456789"]
index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]")
df = DataFrame({"a": [10]}, index=index)
result = df.loc[df.index[0]]
expected = Series(10, index=["a"], name=df.index[0])
tm.assert_series_equal(result, expected)
result = df.copy()
result.loc[df.index[0], "a"] = -1
expected = DataFrame(-1, index=index, columns=["a"])
tm.assert_frame_equal(result, expected)
def test_getitem_str_slice_millisecond_resolution(self, frame_or_series):
# GH#33589
keys = [
"2017-10-25T16:25:04.151",
"2017-10-25T16:25:04.252",
"2017-10-25T16:50:05.237",
"2017-10-25T16:50:05.238",
]
obj = frame_or_series(
[1, 2, 3, 4],
index=[Timestamp(x) for x in keys],
)
result = obj[keys[1] : keys[2]]
expected = frame_or_series(
[2, 3],
index=[
Timestamp(keys[1]),
Timestamp(keys[2]),
],
)
tm.assert_equal(result, expected)
def test_slice_with_datestring_tz():
# GH 24076
# GH 16785
df = DataFrame([0], index=pd.DatetimeIndex(["2019-01-01"], tz="US/Pacific"))
sliced = df["2019-01-01 12:00:00+04:00":"2019-01-01 13:00:00+04:00"]
tm.assert_frame_equal(sliced, df)