|
| 1 | +<p>Given an array of positive integers <code>nums</code>, return the <em>maximum possible sum of an <strong>ascending</strong> subarray in </em><code>nums</code>.</p> |
| 2 | + |
| 3 | +<p>A subarray is defined as a contiguous sequence of numbers in an array.</p> |
| 4 | + |
| 5 | +<p>A subarray <code>[nums<sub>l</sub>, nums<sub>l+1</sub>, ..., nums<sub>r-1</sub>, nums<sub>r</sub>]</code> is <strong>ascending</strong> if for all <code>i</code> where <code>l <= i < r</code>, <code>nums<sub>i </sub> < nums<sub>i+1</sub></code>. Note that a subarray of size <code>1</code> is <strong>ascending</strong>.</p> |
| 6 | + |
| 7 | +<p> </p> |
| 8 | +<p><strong class="example">Example 1:</strong></p> |
| 9 | + |
| 10 | +<pre> |
| 11 | +<strong>Input:</strong> nums = [10,20,30,5,10,50] |
| 12 | +<strong>Output:</strong> 65 |
| 13 | +<strong>Explanation: </strong>[5,10,50] is the ascending subarray with the maximum sum of 65. |
| 14 | +</pre> |
| 15 | + |
| 16 | +<p><strong class="example">Example 2:</strong></p> |
| 17 | + |
| 18 | +<pre> |
| 19 | +<strong>Input:</strong> nums = [10,20,30,40,50] |
| 20 | +<strong>Output:</strong> 150 |
| 21 | +<strong>Explanation: </strong>[10,20,30,40,50] is the ascending subarray with the maximum sum of 150. |
| 22 | +</pre> |
| 23 | + |
| 24 | +<p><strong class="example">Example 3:</strong></p> |
| 25 | + |
| 26 | +<pre> |
| 27 | +<strong>Input:</strong> nums = [12,17,15,13,10,11,12] |
| 28 | +<strong>Output:</strong> 33 |
| 29 | +<strong>Explanation: </strong>[10,11,12] is the ascending subarray with the maximum sum of 33. |
| 30 | +</pre> |
| 31 | + |
| 32 | +<p> </p> |
| 33 | +<p><strong>Constraints:</strong></p> |
| 34 | + |
| 35 | +<ul> |
| 36 | + <li><code>1 <= nums.length <= 100</code></li> |
| 37 | + <li><code>1 <= nums[i] <= 100</code></li> |
| 38 | +</ul> |
0 commit comments