|
| 1 | +<p>There exists an <strong>undirected</strong> tree with <code>n</code> nodes numbered <code>0</code> to <code>n - 1</code>. You are given a <strong>0-indexed</strong> 2D integer array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> indicates that there is an edge between nodes <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> in the tree. You are also given a <strong>positive</strong> integer <code>k</code>, and a <strong>0-indexed</strong> array of <strong>non-negative</strong> integers <code>nums</code> of length <code>n</code>, where <code>nums[i]</code> represents the <strong>value</strong> of the node numbered <code>i</code>.</p> |
| 2 | + |
| 3 | +<p>Alice wants the sum of values of tree nodes to be <strong>maximum</strong>, for which Alice can perform the following operation <strong>any</strong> number of times (<strong>including zero</strong>) on the tree:</p> |
| 4 | + |
| 5 | +<ul> |
| 6 | + <li>Choose any edge <code>[u, v]</code> connecting the nodes <code>u</code> and <code>v</code>, and update their values as follows: |
| 7 | + |
| 8 | + <ul> |
| 9 | + <li><code>nums[u] = nums[u] XOR k</code></li> |
| 10 | + <li><code>nums[v] = nums[v] XOR k</code></li> |
| 11 | + </ul> |
| 12 | + </li> |
| 13 | +</ul> |
| 14 | + |
| 15 | +<p>Return <em>the <strong>maximum</strong> possible <strong>sum</strong> of the <strong>values</strong> Alice can achieve by performing the operation <strong>any</strong> number of times</em>.</p> |
| 16 | + |
| 17 | +<p> </p> |
| 18 | +<p><strong class="example">Example 1:</strong></p> |
| 19 | +<img alt="" src="https://assets.leetcode.com/uploads/2023/11/09/screenshot-2023-11-10-012513.png" style="width: 300px; height: 277px;padding: 10px; background: #fff; border-radius: .5rem;" /> |
| 20 | +<pre> |
| 21 | +<strong>Input:</strong> nums = [1,2,1], k = 3, edges = [[0,1],[0,2]] |
| 22 | +<strong>Output:</strong> 6 |
| 23 | +<strong>Explanation:</strong> Alice can achieve the maximum sum of 6 using a single operation: |
| 24 | +- Choose the edge [0,2]. nums[0] and nums[2] become: 1 XOR 3 = 2, and the array nums becomes: [1,2,1] -> [2,2,2]. |
| 25 | +The total sum of values is 2 + 2 + 2 = 6. |
| 26 | +It can be shown that 6 is the maximum achievable sum of values. |
| 27 | +</pre> |
| 28 | + |
| 29 | +<p><strong class="example">Example 2:</strong></p> |
| 30 | +<img alt="" src="https://assets.leetcode.com/uploads/2024/01/09/screenshot-2024-01-09-220017.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 300px; height: 239px;" /> |
| 31 | +<pre> |
| 32 | +<strong>Input:</strong> nums = [2,3], k = 7, edges = [[0,1]] |
| 33 | +<strong>Output:</strong> 9 |
| 34 | +<strong>Explanation:</strong> Alice can achieve the maximum sum of 9 using a single operation: |
| 35 | +- Choose the edge [0,1]. nums[0] becomes: 2 XOR 7 = 5 and nums[1] become: 3 XOR 7 = 4, and the array nums becomes: [2,3] -> [5,4]. |
| 36 | +The total sum of values is 5 + 4 = 9. |
| 37 | +It can be shown that 9 is the maximum achievable sum of values. |
| 38 | +</pre> |
| 39 | + |
| 40 | +<p><strong class="example">Example 3:</strong></p> |
| 41 | +<img alt="" src="https://assets.leetcode.com/uploads/2023/11/09/screenshot-2023-11-10-012641.png" style="width: 600px; height: 233px;padding: 10px; background: #fff; border-radius: .5rem;" /> |
| 42 | +<pre> |
| 43 | +<strong>Input:</strong> nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]] |
| 44 | +<strong>Output:</strong> 42 |
| 45 | +<strong>Explanation:</strong> The maximum achievable sum is 42 which can be achieved by Alice performing no operations. |
| 46 | +</pre> |
| 47 | + |
| 48 | +<p> </p> |
| 49 | +<p><strong>Constraints:</strong></p> |
| 50 | + |
| 51 | +<ul> |
| 52 | + <li><code>2 <= n == nums.length <= 2 * 10<sup>4</sup></code></li> |
| 53 | + <li><code>1 <= k <= 10<sup>9</sup></code></li> |
| 54 | + <li><code>0 <= nums[i] <= 10<sup>9</sup></code></li> |
| 55 | + <li><code>edges.length == n - 1</code></li> |
| 56 | + <li><code>edges[i].length == 2</code></li> |
| 57 | + <li><code>0 <= edges[i][0], edges[i][1] <= n - 1</code></li> |
| 58 | + <li>The input is generated such that <code>edges</code> represent a valid tree.</li> |
| 59 | +</ul> |
0 commit comments