|
| 1 | +<p>Given an array <code>nums</code> of <strong>distinct</strong> positive integers, return <em>the number of tuples </em><code>(a, b, c, d)</code><em> such that </em><code>a * b = c * d</code><em> where </em><code>a</code><em>, </em><code>b</code><em>, </em><code>c</code><em>, and </em><code>d</code><em> are elements of </em><code>nums</code><em>, and </em><code>a != b != c != d</code><em>.</em></p> |
| 2 | + |
| 3 | +<p> </p> |
| 4 | +<p><strong class="example">Example 1:</strong></p> |
| 5 | + |
| 6 | +<pre> |
| 7 | +<strong>Input:</strong> nums = [2,3,4,6] |
| 8 | +<strong>Output:</strong> 8 |
| 9 | +<strong>Explanation:</strong> There are 8 valid tuples: |
| 10 | +(2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3) |
| 11 | +(3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2) |
| 12 | +</pre> |
| 13 | + |
| 14 | +<p><strong class="example">Example 2:</strong></p> |
| 15 | + |
| 16 | +<pre> |
| 17 | +<strong>Input:</strong> nums = [1,2,4,5,10] |
| 18 | +<strong>Output:</strong> 16 |
| 19 | +<strong>Explanation:</strong> There are 16 valid tuples: |
| 20 | +(1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2) |
| 21 | +(2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1) |
| 22 | +(2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4) |
| 23 | +(4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2) |
| 24 | +</pre> |
| 25 | + |
| 26 | +<p> </p> |
| 27 | +<p><strong>Constraints:</strong></p> |
| 28 | + |
| 29 | +<ul> |
| 30 | + <li><code>1 <= nums.length <= 1000</code></li> |
| 31 | + <li><code>1 <= nums[i] <= 10<sup>4</sup></code></li> |
| 32 | + <li>All elements in <code>nums</code> are <strong>distinct</strong>.</li> |
| 33 | +</ul> |
0 commit comments