@@ -83,16 +83,16 @@ def test_nanminmax(self, opname, dtype, val, index_or_series):
83
83
# GH#7261
84
84
klass = index_or_series
85
85
86
- if dtype in ["Int64" , "boolean" ] and klass == pd . Index :
86
+ if dtype in ["Int64" , "boolean" ] and klass == Index :
87
87
pytest .skip ("EAs can't yet be stored in an index" )
88
88
89
89
def check_missing (res ):
90
90
if dtype == "datetime64[ns]" :
91
- return res is pd . NaT
91
+ return res is NaT
92
92
elif dtype == "Int64" :
93
93
return res is pd .NA
94
94
else :
95
- return pd . isna (res )
95
+ return isna (res )
96
96
97
97
obj = klass ([None ], dtype = dtype )
98
98
assert check_missing (getattr (obj , opname )())
@@ -120,15 +120,15 @@ def test_nanargminmax(self, opname, index_or_series):
120
120
klass = index_or_series
121
121
arg_op = "arg" + opname if klass is Index else "idx" + opname
122
122
123
- obj = klass ([pd . NaT , datetime (2011 , 11 , 1 )])
123
+ obj = klass ([NaT , datetime (2011 , 11 , 1 )])
124
124
assert getattr (obj , arg_op )() == 1
125
125
result = getattr (obj , arg_op )(skipna = False )
126
126
if klass is Series :
127
127
assert np .isnan (result )
128
128
else :
129
129
assert result == - 1
130
130
131
- obj = klass ([pd . NaT , datetime (2011 , 11 , 1 ), pd . NaT ])
131
+ obj = klass ([NaT , datetime (2011 , 11 , 1 ), NaT ])
132
132
# check DatetimeIndex non-monotonic path
133
133
assert getattr (obj , arg_op )() == 1
134
134
result = getattr (obj , arg_op )(skipna = False )
@@ -145,8 +145,8 @@ def test_nanops_empty_object(self, opname, index_or_series, dtype):
145
145
146
146
obj = klass ([], dtype = dtype )
147
147
148
- assert getattr (obj , opname )() is pd . NaT
149
- assert getattr (obj , opname )(skipna = False ) is pd . NaT
148
+ assert getattr (obj , opname )() is NaT
149
+ assert getattr (obj , opname )(skipna = False ) is NaT
150
150
151
151
with pytest .raises (ValueError , match = "empty sequence" ):
152
152
getattr (obj , arg_op )()
@@ -170,13 +170,13 @@ def test_argminmax(self):
170
170
assert obj .argmin (skipna = False ) == - 1
171
171
assert obj .argmax (skipna = False ) == - 1
172
172
173
- obj = Index ([pd . NaT , datetime (2011 , 11 , 1 ), datetime (2011 , 11 , 2 ), pd . NaT ])
173
+ obj = Index ([NaT , datetime (2011 , 11 , 1 ), datetime (2011 , 11 , 2 ), NaT ])
174
174
assert obj .argmin () == 1
175
175
assert obj .argmax () == 2
176
176
assert obj .argmin (skipna = False ) == - 1
177
177
assert obj .argmax (skipna = False ) == - 1
178
178
179
- obj = Index ([pd . NaT ])
179
+ obj = Index ([NaT ])
180
180
assert obj .argmin () == - 1
181
181
assert obj .argmax () == - 1
182
182
assert obj .argmin (skipna = False ) == - 1
@@ -186,7 +186,7 @@ def test_argminmax(self):
186
186
def test_same_tz_min_max_axis_1 (self , op , expected_col ):
187
187
# GH 10390
188
188
df = DataFrame (
189
- pd . date_range ("2016-01-01 00:00:00" , periods = 3 , tz = "UTC" ), columns = ["a" ]
189
+ date_range ("2016-01-01 00:00:00" , periods = 3 , tz = "UTC" ), columns = ["a" ]
190
190
)
191
191
df ["b" ] = df .a .subtract (Timedelta (seconds = 3600 ))
192
192
result = getattr (df , op )(axis = 1 )
@@ -262,13 +262,13 @@ def test_minmax_timedelta64(self):
262
262
def test_minmax_timedelta_empty_or_na (self , op ):
263
263
# Return NaT
264
264
obj = TimedeltaIndex ([])
265
- assert getattr (obj , op )() is pd . NaT
265
+ assert getattr (obj , op )() is NaT
266
266
267
- obj = TimedeltaIndex ([pd . NaT ])
268
- assert getattr (obj , op )() is pd . NaT
267
+ obj = TimedeltaIndex ([NaT ])
268
+ assert getattr (obj , op )() is NaT
269
269
270
- obj = TimedeltaIndex ([pd . NaT , pd . NaT , pd . NaT ])
271
- assert getattr (obj , op )() is pd . NaT
270
+ obj = TimedeltaIndex ([NaT , NaT , NaT ])
271
+ assert getattr (obj , op )() is NaT
272
272
273
273
def test_numpy_minmax_timedelta64 (self ):
274
274
td = timedelta_range ("16815 days" , "16820 days" , freq = "D" )
@@ -373,7 +373,7 @@ def test_minmax_tz(self, tz_naive_fixture):
373
373
374
374
# non-monotonic
375
375
idx2 = DatetimeIndex (
376
- ["2011-01-01" , pd . NaT , "2011-01-03" , "2011-01-02" , pd . NaT ], tz = tz
376
+ ["2011-01-01" , NaT , "2011-01-03" , "2011-01-02" , NaT ], tz = tz
377
377
)
378
378
assert not idx2 .is_monotonic
379
379
@@ -387,13 +387,13 @@ def test_minmax_tz(self, tz_naive_fixture):
387
387
def test_minmax_nat_datetime64 (self , op ):
388
388
# Return NaT
389
389
obj = DatetimeIndex ([])
390
- assert pd . isna (getattr (obj , op )())
390
+ assert isna (getattr (obj , op )())
391
391
392
- obj = DatetimeIndex ([pd . NaT ])
393
- assert pd . isna (getattr (obj , op )())
392
+ obj = DatetimeIndex ([NaT ])
393
+ assert isna (getattr (obj , op )())
394
394
395
- obj = DatetimeIndex ([pd . NaT , pd . NaT , pd . NaT ])
396
- assert pd . isna (getattr (obj , op )())
395
+ obj = DatetimeIndex ([NaT , NaT , NaT ])
396
+ assert isna (getattr (obj , op )())
397
397
398
398
def test_numpy_minmax_integer (self ):
399
399
# GH#26125
@@ -449,7 +449,7 @@ def test_numpy_minmax_range(self):
449
449
# is the same as basic integer index
450
450
451
451
def test_numpy_minmax_datetime64 (self ):
452
- dr = pd . date_range (start = "2016-01-15" , end = "2016-01-20" )
452
+ dr = date_range (start = "2016-01-15" , end = "2016-01-20" )
453
453
454
454
assert np .min (dr ) == Timestamp ("2016-01-15 00:00:00" , freq = "D" )
455
455
assert np .max (dr ) == Timestamp ("2016-01-20 00:00:00" , freq = "D" )
@@ -588,7 +588,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
588
588
assert result == unit
589
589
590
590
result = getattr (s , method )(min_count = 1 )
591
- assert pd . isna (result )
591
+ assert isna (result )
592
592
593
593
# Skipna, default
594
594
result = getattr (s , method )(skipna = True )
@@ -599,13 +599,13 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
599
599
assert result == unit
600
600
601
601
result = getattr (s , method )(skipna = True , min_count = 1 )
602
- assert pd . isna (result )
602
+ assert isna (result )
603
603
604
604
result = getattr (s , method )(skipna = False , min_count = 0 )
605
605
assert result == unit
606
606
607
607
result = getattr (s , method )(skipna = False , min_count = 1 )
608
- assert pd . isna (result )
608
+ assert isna (result )
609
609
610
610
# All-NA
611
611
s = Series ([np .nan ], dtype = dtype )
@@ -618,7 +618,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
618
618
assert result == unit
619
619
620
620
result = getattr (s , method )(min_count = 1 )
621
- assert pd . isna (result )
621
+ assert isna (result )
622
622
623
623
# Skipna, default
624
624
result = getattr (s , method )(skipna = True )
@@ -629,7 +629,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
629
629
assert result == unit
630
630
631
631
result = getattr (s , method )(skipna = True , min_count = 1 )
632
- assert pd . isna (result )
632
+ assert isna (result )
633
633
634
634
# Mix of valid, empty
635
635
s = Series ([np .nan , 1 ], dtype = dtype )
@@ -657,18 +657,18 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
657
657
658
658
s = Series ([1 ], dtype = dtype )
659
659
result = getattr (s , method )(min_count = 2 )
660
- assert pd . isna (result )
660
+ assert isna (result )
661
661
662
662
result = getattr (s , method )(skipna = False , min_count = 2 )
663
- assert pd . isna (result )
663
+ assert isna (result )
664
664
665
665
s = Series ([np .nan ], dtype = dtype )
666
666
result = getattr (s , method )(min_count = 2 )
667
- assert pd . isna (result )
667
+ assert isna (result )
668
668
669
669
s = Series ([np .nan , 1 ], dtype = dtype )
670
670
result = getattr (s , method )(min_count = 2 )
671
- assert pd . isna (result )
671
+ assert isna (result )
672
672
673
673
@pytest .mark .parametrize ("method, unit" , [("sum" , 0.0 ), ("prod" , 1.0 )])
674
674
def test_empty_multi (self , method , unit ):
@@ -716,7 +716,7 @@ def test_ops_consistency_on_empty(self, method):
716
716
717
717
# float
718
718
result = getattr (Series (dtype = float ), method )()
719
- assert pd . isna (result )
719
+ assert isna (result )
720
720
721
721
# timedelta64[ns]
722
722
tdser = Series ([], dtype = "m8[ns]" )
@@ -732,7 +732,7 @@ def test_ops_consistency_on_empty(self, method):
732
732
getattr (tdser , method )()
733
733
else :
734
734
result = getattr (tdser , method )()
735
- assert result is pd . NaT
735
+ assert result is NaT
736
736
737
737
def test_nansum_buglet (self ):
738
738
ser = Series ([1.0 , np .nan ], index = [0 , 1 ])
@@ -770,10 +770,10 @@ def test_sum_overflow(self, use_bottleneck):
770
770
def test_empty_timeseries_reductions_return_nat (self ):
771
771
# covers GH#11245
772
772
for dtype in ("m8[ns]" , "m8[ns]" , "M8[ns]" , "M8[ns, UTC]" ):
773
- assert Series ([], dtype = dtype ).min () is pd . NaT
774
- assert Series ([], dtype = dtype ).max () is pd . NaT
775
- assert Series ([], dtype = dtype ).min (skipna = False ) is pd . NaT
776
- assert Series ([], dtype = dtype ).max (skipna = False ) is pd . NaT
773
+ assert Series ([], dtype = dtype ).min () is NaT
774
+ assert Series ([], dtype = dtype ).max () is NaT
775
+ assert Series ([], dtype = dtype ).min (skipna = False ) is NaT
776
+ assert Series ([], dtype = dtype ).max (skipna = False ) is NaT
777
777
778
778
def test_numpy_argmin (self ):
779
779
# See GH#16830
@@ -820,7 +820,7 @@ def test_idxmin(self):
820
820
821
821
# skipna or no
822
822
assert string_series [string_series .idxmin ()] == string_series .min ()
823
- assert pd . isna (string_series .idxmin (skipna = False ))
823
+ assert isna (string_series .idxmin (skipna = False ))
824
824
825
825
# no NaNs
826
826
nona = string_series .dropna ()
@@ -829,10 +829,10 @@ def test_idxmin(self):
829
829
830
830
# all NaNs
831
831
allna = string_series * np .nan
832
- assert pd . isna (allna .idxmin ())
832
+ assert isna (allna .idxmin ())
833
833
834
834
# datetime64[ns]
835
- s = Series (pd . date_range ("20130102" , periods = 6 ))
835
+ s = Series (date_range ("20130102" , periods = 6 ))
836
836
result = s .idxmin ()
837
837
assert result == 0
838
838
@@ -850,7 +850,7 @@ def test_idxmax(self):
850
850
851
851
# skipna or no
852
852
assert string_series [string_series .idxmax ()] == string_series .max ()
853
- assert pd . isna (string_series .idxmax (skipna = False ))
853
+ assert isna (string_series .idxmax (skipna = False ))
854
854
855
855
# no NaNs
856
856
nona = string_series .dropna ()
@@ -859,7 +859,7 @@ def test_idxmax(self):
859
859
860
860
# all NaNs
861
861
allna = string_series * np .nan
862
- assert pd . isna (allna .idxmax ())
862
+ assert isna (allna .idxmax ())
863
863
864
864
from pandas import date_range
865
865
@@ -1010,7 +1010,7 @@ def test_any_all_datetimelike(self):
1010
1010
def test_timedelta64_analytics (self ):
1011
1011
1012
1012
# index min/max
1013
- dti = pd . date_range ("2012-1-1" , periods = 3 , freq = "D" )
1013
+ dti = date_range ("2012-1-1" , periods = 3 , freq = "D" )
1014
1014
td = Series (dti ) - Timestamp ("20120101" )
1015
1015
1016
1016
result = td .idxmin ()
@@ -1030,8 +1030,8 @@ def test_timedelta64_analytics(self):
1030
1030
assert result == 2
1031
1031
1032
1032
# abs
1033
- s1 = Series (pd . date_range ("20120101" , periods = 3 ))
1034
- s2 = Series (pd . date_range ("20120102" , periods = 3 ))
1033
+ s1 = Series (date_range ("20120101" , periods = 3 ))
1034
+ s2 = Series (date_range ("20120102" , periods = 3 ))
1035
1035
expected = Series (s2 - s1 )
1036
1036
1037
1037
result = np .abs (s1 - s2 )
@@ -1108,35 +1108,35 @@ class TestDatetime64SeriesReductions:
1108
1108
@pytest .mark .parametrize (
1109
1109
"nat_ser" ,
1110
1110
[
1111
- Series ([pd . NaT , pd . NaT ]),
1112
- Series ([pd . NaT , Timedelta ("nat" )]),
1111
+ Series ([NaT , NaT ]),
1112
+ Series ([NaT , Timedelta ("nat" )]),
1113
1113
Series ([Timedelta ("nat" ), Timedelta ("nat" )]),
1114
1114
],
1115
1115
)
1116
1116
def test_minmax_nat_series (self , nat_ser ):
1117
1117
# GH#23282
1118
- assert nat_ser .min () is pd . NaT
1119
- assert nat_ser .max () is pd . NaT
1120
- assert nat_ser .min (skipna = False ) is pd . NaT
1121
- assert nat_ser .max (skipna = False ) is pd . NaT
1118
+ assert nat_ser .min () is NaT
1119
+ assert nat_ser .max () is NaT
1120
+ assert nat_ser .min (skipna = False ) is NaT
1121
+ assert nat_ser .max (skipna = False ) is NaT
1122
1122
1123
1123
@pytest .mark .parametrize (
1124
1124
"nat_df" ,
1125
1125
[
1126
- DataFrame ([pd . NaT , pd . NaT ]),
1127
- DataFrame ([pd . NaT , Timedelta ("nat" )]),
1126
+ DataFrame ([NaT , NaT ]),
1127
+ DataFrame ([NaT , Timedelta ("nat" )]),
1128
1128
DataFrame ([Timedelta ("nat" ), Timedelta ("nat" )]),
1129
1129
],
1130
1130
)
1131
1131
def test_minmax_nat_dataframe (self , nat_df ):
1132
1132
# GH#23282
1133
- assert nat_df .min ()[0 ] is pd . NaT
1134
- assert nat_df .max ()[0 ] is pd . NaT
1135
- assert nat_df .min (skipna = False )[0 ] is pd . NaT
1136
- assert nat_df .max (skipna = False )[0 ] is pd . NaT
1133
+ assert nat_df .min ()[0 ] is NaT
1134
+ assert nat_df .max ()[0 ] is NaT
1135
+ assert nat_df .min (skipna = False )[0 ] is NaT
1136
+ assert nat_df .max (skipna = False )[0 ] is NaT
1137
1137
1138
1138
def test_min_max (self ):
1139
- rng = pd . date_range ("1/1/2000" , "12/31/2000" )
1139
+ rng = date_range ("1/1/2000" , "12/31/2000" )
1140
1140
rng2 = rng .take (np .random .permutation (len (rng )))
1141
1141
1142
1142
the_min = rng2 .min ()
@@ -1150,7 +1150,7 @@ def test_min_max(self):
1150
1150
assert rng .max () == rng [- 1 ]
1151
1151
1152
1152
def test_min_max_series (self ):
1153
- rng = pd . date_range ("1/1/2000" , periods = 10 , freq = "4h" )
1153
+ rng = date_range ("1/1/2000" , periods = 10 , freq = "4h" )
1154
1154
lvls = ["A" , "A" , "A" , "B" , "B" , "B" , "C" , "C" , "C" , "C" ]
1155
1155
df = DataFrame ({"TS" : rng , "V" : np .random .randn (len (rng )), "L" : lvls })
1156
1156
0 commit comments