Skip to content

Commit 89adc52

Browse files
sionedbakerjbrockmendel
authored andcommitted
GH39992 update inconsistent namespace usage for reductions (pandas-dev#40310)
1 parent 7d6a80d commit 89adc52

File tree

1 file changed

+59
-59
lines changed

1 file changed

+59
-59
lines changed

pandas/tests/reductions/test_reductions.py

+59-59
Original file line numberDiff line numberDiff line change
@@ -83,16 +83,16 @@ def test_nanminmax(self, opname, dtype, val, index_or_series):
8383
# GH#7261
8484
klass = index_or_series
8585

86-
if dtype in ["Int64", "boolean"] and klass == pd.Index:
86+
if dtype in ["Int64", "boolean"] and klass == Index:
8787
pytest.skip("EAs can't yet be stored in an index")
8888

8989
def check_missing(res):
9090
if dtype == "datetime64[ns]":
91-
return res is pd.NaT
91+
return res is NaT
9292
elif dtype == "Int64":
9393
return res is pd.NA
9494
else:
95-
return pd.isna(res)
95+
return isna(res)
9696

9797
obj = klass([None], dtype=dtype)
9898
assert check_missing(getattr(obj, opname)())
@@ -120,15 +120,15 @@ def test_nanargminmax(self, opname, index_or_series):
120120
klass = index_or_series
121121
arg_op = "arg" + opname if klass is Index else "idx" + opname
122122

123-
obj = klass([pd.NaT, datetime(2011, 11, 1)])
123+
obj = klass([NaT, datetime(2011, 11, 1)])
124124
assert getattr(obj, arg_op)() == 1
125125
result = getattr(obj, arg_op)(skipna=False)
126126
if klass is Series:
127127
assert np.isnan(result)
128128
else:
129129
assert result == -1
130130

131-
obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT])
131+
obj = klass([NaT, datetime(2011, 11, 1), NaT])
132132
# check DatetimeIndex non-monotonic path
133133
assert getattr(obj, arg_op)() == 1
134134
result = getattr(obj, arg_op)(skipna=False)
@@ -145,8 +145,8 @@ def test_nanops_empty_object(self, opname, index_or_series, dtype):
145145

146146
obj = klass([], dtype=dtype)
147147

148-
assert getattr(obj, opname)() is pd.NaT
149-
assert getattr(obj, opname)(skipna=False) is pd.NaT
148+
assert getattr(obj, opname)() is NaT
149+
assert getattr(obj, opname)(skipna=False) is NaT
150150

151151
with pytest.raises(ValueError, match="empty sequence"):
152152
getattr(obj, arg_op)()
@@ -170,13 +170,13 @@ def test_argminmax(self):
170170
assert obj.argmin(skipna=False) == -1
171171
assert obj.argmax(skipna=False) == -1
172172

173-
obj = Index([pd.NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), pd.NaT])
173+
obj = Index([NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), NaT])
174174
assert obj.argmin() == 1
175175
assert obj.argmax() == 2
176176
assert obj.argmin(skipna=False) == -1
177177
assert obj.argmax(skipna=False) == -1
178178

179-
obj = Index([pd.NaT])
179+
obj = Index([NaT])
180180
assert obj.argmin() == -1
181181
assert obj.argmax() == -1
182182
assert obj.argmin(skipna=False) == -1
@@ -186,7 +186,7 @@ def test_argminmax(self):
186186
def test_same_tz_min_max_axis_1(self, op, expected_col):
187187
# GH 10390
188188
df = DataFrame(
189-
pd.date_range("2016-01-01 00:00:00", periods=3, tz="UTC"), columns=["a"]
189+
date_range("2016-01-01 00:00:00", periods=3, tz="UTC"), columns=["a"]
190190
)
191191
df["b"] = df.a.subtract(Timedelta(seconds=3600))
192192
result = getattr(df, op)(axis=1)
@@ -262,13 +262,13 @@ def test_minmax_timedelta64(self):
262262
def test_minmax_timedelta_empty_or_na(self, op):
263263
# Return NaT
264264
obj = TimedeltaIndex([])
265-
assert getattr(obj, op)() is pd.NaT
265+
assert getattr(obj, op)() is NaT
266266

267-
obj = TimedeltaIndex([pd.NaT])
268-
assert getattr(obj, op)() is pd.NaT
267+
obj = TimedeltaIndex([NaT])
268+
assert getattr(obj, op)() is NaT
269269

270-
obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT])
271-
assert getattr(obj, op)() is pd.NaT
270+
obj = TimedeltaIndex([NaT, NaT, NaT])
271+
assert getattr(obj, op)() is NaT
272272

273273
def test_numpy_minmax_timedelta64(self):
274274
td = timedelta_range("16815 days", "16820 days", freq="D")
@@ -373,7 +373,7 @@ def test_minmax_tz(self, tz_naive_fixture):
373373

374374
# non-monotonic
375375
idx2 = DatetimeIndex(
376-
["2011-01-01", pd.NaT, "2011-01-03", "2011-01-02", pd.NaT], tz=tz
376+
["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], tz=tz
377377
)
378378
assert not idx2.is_monotonic
379379

@@ -387,13 +387,13 @@ def test_minmax_tz(self, tz_naive_fixture):
387387
def test_minmax_nat_datetime64(self, op):
388388
# Return NaT
389389
obj = DatetimeIndex([])
390-
assert pd.isna(getattr(obj, op)())
390+
assert isna(getattr(obj, op)())
391391

392-
obj = DatetimeIndex([pd.NaT])
393-
assert pd.isna(getattr(obj, op)())
392+
obj = DatetimeIndex([NaT])
393+
assert isna(getattr(obj, op)())
394394

395-
obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT])
396-
assert pd.isna(getattr(obj, op)())
395+
obj = DatetimeIndex([NaT, NaT, NaT])
396+
assert isna(getattr(obj, op)())
397397

398398
def test_numpy_minmax_integer(self):
399399
# GH#26125
@@ -449,7 +449,7 @@ def test_numpy_minmax_range(self):
449449
# is the same as basic integer index
450450

451451
def test_numpy_minmax_datetime64(self):
452-
dr = pd.date_range(start="2016-01-15", end="2016-01-20")
452+
dr = date_range(start="2016-01-15", end="2016-01-20")
453453

454454
assert np.min(dr) == Timestamp("2016-01-15 00:00:00", freq="D")
455455
assert np.max(dr) == Timestamp("2016-01-20 00:00:00", freq="D")
@@ -588,7 +588,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
588588
assert result == unit
589589

590590
result = getattr(s, method)(min_count=1)
591-
assert pd.isna(result)
591+
assert isna(result)
592592

593593
# Skipna, default
594594
result = getattr(s, method)(skipna=True)
@@ -599,13 +599,13 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
599599
assert result == unit
600600

601601
result = getattr(s, method)(skipna=True, min_count=1)
602-
assert pd.isna(result)
602+
assert isna(result)
603603

604604
result = getattr(s, method)(skipna=False, min_count=0)
605605
assert result == unit
606606

607607
result = getattr(s, method)(skipna=False, min_count=1)
608-
assert pd.isna(result)
608+
assert isna(result)
609609

610610
# All-NA
611611
s = Series([np.nan], dtype=dtype)
@@ -618,7 +618,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
618618
assert result == unit
619619

620620
result = getattr(s, method)(min_count=1)
621-
assert pd.isna(result)
621+
assert isna(result)
622622

623623
# Skipna, default
624624
result = getattr(s, method)(skipna=True)
@@ -629,7 +629,7 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
629629
assert result == unit
630630

631631
result = getattr(s, method)(skipna=True, min_count=1)
632-
assert pd.isna(result)
632+
assert isna(result)
633633

634634
# Mix of valid, empty
635635
s = Series([np.nan, 1], dtype=dtype)
@@ -657,18 +657,18 @@ def test_empty(self, method, unit, use_bottleneck, dtype):
657657

658658
s = Series([1], dtype=dtype)
659659
result = getattr(s, method)(min_count=2)
660-
assert pd.isna(result)
660+
assert isna(result)
661661

662662
result = getattr(s, method)(skipna=False, min_count=2)
663-
assert pd.isna(result)
663+
assert isna(result)
664664

665665
s = Series([np.nan], dtype=dtype)
666666
result = getattr(s, method)(min_count=2)
667-
assert pd.isna(result)
667+
assert isna(result)
668668

669669
s = Series([np.nan, 1], dtype=dtype)
670670
result = getattr(s, method)(min_count=2)
671-
assert pd.isna(result)
671+
assert isna(result)
672672

673673
@pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)])
674674
def test_empty_multi(self, method, unit):
@@ -716,7 +716,7 @@ def test_ops_consistency_on_empty(self, method):
716716

717717
# float
718718
result = getattr(Series(dtype=float), method)()
719-
assert pd.isna(result)
719+
assert isna(result)
720720

721721
# timedelta64[ns]
722722
tdser = Series([], dtype="m8[ns]")
@@ -732,7 +732,7 @@ def test_ops_consistency_on_empty(self, method):
732732
getattr(tdser, method)()
733733
else:
734734
result = getattr(tdser, method)()
735-
assert result is pd.NaT
735+
assert result is NaT
736736

737737
def test_nansum_buglet(self):
738738
ser = Series([1.0, np.nan], index=[0, 1])
@@ -770,10 +770,10 @@ def test_sum_overflow(self, use_bottleneck):
770770
def test_empty_timeseries_reductions_return_nat(self):
771771
# covers GH#11245
772772
for dtype in ("m8[ns]", "m8[ns]", "M8[ns]", "M8[ns, UTC]"):
773-
assert Series([], dtype=dtype).min() is pd.NaT
774-
assert Series([], dtype=dtype).max() is pd.NaT
775-
assert Series([], dtype=dtype).min(skipna=False) is pd.NaT
776-
assert Series([], dtype=dtype).max(skipna=False) is pd.NaT
773+
assert Series([], dtype=dtype).min() is NaT
774+
assert Series([], dtype=dtype).max() is NaT
775+
assert Series([], dtype=dtype).min(skipna=False) is NaT
776+
assert Series([], dtype=dtype).max(skipna=False) is NaT
777777

778778
def test_numpy_argmin(self):
779779
# See GH#16830
@@ -820,7 +820,7 @@ def test_idxmin(self):
820820

821821
# skipna or no
822822
assert string_series[string_series.idxmin()] == string_series.min()
823-
assert pd.isna(string_series.idxmin(skipna=False))
823+
assert isna(string_series.idxmin(skipna=False))
824824

825825
# no NaNs
826826
nona = string_series.dropna()
@@ -829,10 +829,10 @@ def test_idxmin(self):
829829

830830
# all NaNs
831831
allna = string_series * np.nan
832-
assert pd.isna(allna.idxmin())
832+
assert isna(allna.idxmin())
833833

834834
# datetime64[ns]
835-
s = Series(pd.date_range("20130102", periods=6))
835+
s = Series(date_range("20130102", periods=6))
836836
result = s.idxmin()
837837
assert result == 0
838838

@@ -850,7 +850,7 @@ def test_idxmax(self):
850850

851851
# skipna or no
852852
assert string_series[string_series.idxmax()] == string_series.max()
853-
assert pd.isna(string_series.idxmax(skipna=False))
853+
assert isna(string_series.idxmax(skipna=False))
854854

855855
# no NaNs
856856
nona = string_series.dropna()
@@ -859,7 +859,7 @@ def test_idxmax(self):
859859

860860
# all NaNs
861861
allna = string_series * np.nan
862-
assert pd.isna(allna.idxmax())
862+
assert isna(allna.idxmax())
863863

864864
from pandas import date_range
865865

@@ -1010,7 +1010,7 @@ def test_any_all_datetimelike(self):
10101010
def test_timedelta64_analytics(self):
10111011

10121012
# index min/max
1013-
dti = pd.date_range("2012-1-1", periods=3, freq="D")
1013+
dti = date_range("2012-1-1", periods=3, freq="D")
10141014
td = Series(dti) - Timestamp("20120101")
10151015

10161016
result = td.idxmin()
@@ -1030,8 +1030,8 @@ def test_timedelta64_analytics(self):
10301030
assert result == 2
10311031

10321032
# abs
1033-
s1 = Series(pd.date_range("20120101", periods=3))
1034-
s2 = Series(pd.date_range("20120102", periods=3))
1033+
s1 = Series(date_range("20120101", periods=3))
1034+
s2 = Series(date_range("20120102", periods=3))
10351035
expected = Series(s2 - s1)
10361036

10371037
result = np.abs(s1 - s2)
@@ -1108,35 +1108,35 @@ class TestDatetime64SeriesReductions:
11081108
@pytest.mark.parametrize(
11091109
"nat_ser",
11101110
[
1111-
Series([pd.NaT, pd.NaT]),
1112-
Series([pd.NaT, Timedelta("nat")]),
1111+
Series([NaT, NaT]),
1112+
Series([NaT, Timedelta("nat")]),
11131113
Series([Timedelta("nat"), Timedelta("nat")]),
11141114
],
11151115
)
11161116
def test_minmax_nat_series(self, nat_ser):
11171117
# GH#23282
1118-
assert nat_ser.min() is pd.NaT
1119-
assert nat_ser.max() is pd.NaT
1120-
assert nat_ser.min(skipna=False) is pd.NaT
1121-
assert nat_ser.max(skipna=False) is pd.NaT
1118+
assert nat_ser.min() is NaT
1119+
assert nat_ser.max() is NaT
1120+
assert nat_ser.min(skipna=False) is NaT
1121+
assert nat_ser.max(skipna=False) is NaT
11221122

11231123
@pytest.mark.parametrize(
11241124
"nat_df",
11251125
[
1126-
DataFrame([pd.NaT, pd.NaT]),
1127-
DataFrame([pd.NaT, Timedelta("nat")]),
1126+
DataFrame([NaT, NaT]),
1127+
DataFrame([NaT, Timedelta("nat")]),
11281128
DataFrame([Timedelta("nat"), Timedelta("nat")]),
11291129
],
11301130
)
11311131
def test_minmax_nat_dataframe(self, nat_df):
11321132
# GH#23282
1133-
assert nat_df.min()[0] is pd.NaT
1134-
assert nat_df.max()[0] is pd.NaT
1135-
assert nat_df.min(skipna=False)[0] is pd.NaT
1136-
assert nat_df.max(skipna=False)[0] is pd.NaT
1133+
assert nat_df.min()[0] is NaT
1134+
assert nat_df.max()[0] is NaT
1135+
assert nat_df.min(skipna=False)[0] is NaT
1136+
assert nat_df.max(skipna=False)[0] is NaT
11371137

11381138
def test_min_max(self):
1139-
rng = pd.date_range("1/1/2000", "12/31/2000")
1139+
rng = date_range("1/1/2000", "12/31/2000")
11401140
rng2 = rng.take(np.random.permutation(len(rng)))
11411141

11421142
the_min = rng2.min()
@@ -1150,7 +1150,7 @@ def test_min_max(self):
11501150
assert rng.max() == rng[-1]
11511151

11521152
def test_min_max_series(self):
1153-
rng = pd.date_range("1/1/2000", periods=10, freq="4h")
1153+
rng = date_range("1/1/2000", periods=10, freq="4h")
11541154
lvls = ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"]
11551155
df = DataFrame({"TS": rng, "V": np.random.randn(len(rng)), "L": lvls})
11561156

0 commit comments

Comments
 (0)