forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatetimes.py
1671 lines (1387 loc) · 60.7 KB
/
datetimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=E1101
from __future__ import division
from datetime import datetime, time, timedelta
import operator
import warnings
import numpy as np
from pandas._libs import (
Timestamp, index as libindex, join as libjoin, lib, tslib as libts)
from pandas._libs.tslibs import (
ccalendar, conversion, fields, parsing, timezones)
import pandas.compat as compat
from pandas.util._decorators import Appender, Substitution, cache_readonly
from pandas.core.dtypes.common import (
_INT64_DTYPE, _NS_DTYPE, ensure_int64, is_datetime64_dtype,
is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal, is_float,
is_integer, is_integer_dtype, is_list_like, is_period_dtype, is_scalar,
is_string_like, pandas_dtype)
import pandas.core.dtypes.concat as _concat
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.missing import isna
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays.datetimes import (
DatetimeArrayMixin as DatetimeArray, _to_m8)
from pandas.core.base import _shared_docs
import pandas.core.common as com
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core.indexes.datetimelike import (
DatelikeOps, DatetimeIndexOpsMixin, TimelikeOps, wrap_array_method,
wrap_field_accessor)
from pandas.core.indexes.numeric import Int64Index
from pandas.core.ops import get_op_result_name
import pandas.core.tools.datetimes as tools
from pandas.tseries import offsets
from pandas.tseries.frequencies import Resolution, to_offset
from pandas.tseries.offsets import CDay, prefix_mapping
def _new_DatetimeIndex(cls, d):
""" This is called upon unpickling, rather than the default which doesn't
have arguments and breaks __new__ """
# data are already in UTC
# so need to localize
tz = d.pop('tz', None)
result = cls.__new__(cls, verify_integrity=False, **d)
if tz is not None:
result = result.tz_localize('UTC').tz_convert(tz)
return result
class DatetimeIndex(DatetimeArray, DatelikeOps, TimelikeOps,
DatetimeIndexOpsMixin, Int64Index):
"""
Immutable ndarray of datetime64 data, represented internally as int64, and
which can be boxed to Timestamp objects that are subclasses of datetime and
carry metadata such as frequency information.
Parameters
----------
data : array-like (1-dimensional), optional
Optional datetime-like data to construct index with
copy : bool
Make a copy of input ndarray
freq : string or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string
'infer' can be passed in order to set the frequency of the index as the
inferred frequency upon creation
start : starting value, datetime-like, optional
If data is None, start is used as the start point in generating regular
timestamp data.
periods : int, optional, > 0
Number of periods to generate, if generating index. Takes precedence
over end argument
end : end time, datetime-like, optional
If periods is none, generated index will extend to first conforming
time on or just past end argument
closed : string or None, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
tz : pytz.timezone or dateutil.tz.tzfile
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from 03:00
DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC
and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter
dictates how ambiguous times should be handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False signifies a
non-DST time (note that this flag is only applicable for ambiguous
times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous times
name : object
Name to be stored in the index
dayfirst : bool, default False
If True, parse dates in `data` with the day first order
yearfirst : bool, default False
If True parse dates in `data` with the year first order
Attributes
----------
year
month
day
hour
minute
second
microsecond
nanosecond
date
time
timetz
dayofyear
weekofyear
week
dayofweek
weekday
quarter
tz
freq
freqstr
is_month_start
is_month_end
is_quarter_start
is_quarter_end
is_year_start
is_year_end
is_leap_year
inferred_freq
Methods
-------
normalize
strftime
snap
tz_convert
tz_localize
round
floor
ceil
to_period
to_perioddelta
to_pydatetime
to_series
to_frame
month_name
day_name
Notes
-----
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
See Also
---------
Index : The base pandas Index type.
TimedeltaIndex : Index of timedelta64 data.
PeriodIndex : Index of Period data.
pandas.to_datetime : Convert argument to datetime.
"""
_typ = 'datetimeindex'
_join_precedence = 10
def _join_i8_wrapper(joinf, **kwargs):
return DatetimeIndexOpsMixin._join_i8_wrapper(joinf, dtype='M8[ns]',
**kwargs)
_inner_indexer = _join_i8_wrapper(libjoin.inner_join_indexer_int64)
_outer_indexer = _join_i8_wrapper(libjoin.outer_join_indexer_int64)
_left_indexer = _join_i8_wrapper(libjoin.left_join_indexer_int64)
_left_indexer_unique = _join_i8_wrapper(
libjoin.left_join_indexer_unique_int64, with_indexers=False)
_engine_type = libindex.DatetimeEngine
_tz = None
_freq = None
_comparables = ['name', 'freqstr', 'tz']
_attributes = ['name', 'freq', 'tz']
# dummy attribute so that datetime.__eq__(DatetimeArray) defers
# by returning NotImplemented
timetuple = None
# define my properties & methods for delegation
_bool_ops = ['is_month_start', 'is_month_end',
'is_quarter_start', 'is_quarter_end', 'is_year_start',
'is_year_end', 'is_leap_year']
_object_ops = ['weekday_name', 'freq', 'tz']
_field_ops = ['year', 'month', 'day', 'hour', 'minute', 'second',
'weekofyear', 'week', 'weekday', 'dayofweek',
'dayofyear', 'quarter', 'days_in_month',
'daysinmonth', 'microsecond',
'nanosecond']
_other_ops = ['date', 'time', 'timetz']
_datetimelike_ops = _field_ops + _object_ops + _bool_ops + _other_ops
_datetimelike_methods = ['to_period', 'tz_localize',
'tz_convert',
'normalize', 'strftime', 'round', 'floor',
'ceil', 'month_name', 'day_name']
_is_numeric_dtype = False
_infer_as_myclass = True
# --------------------------------------------------------------------
# Constructors
def __new__(cls, data=None,
freq=None, start=None, end=None, periods=None, tz=None,
normalize=False, closed=None, ambiguous='raise',
dayfirst=False, yearfirst=False, dtype=None,
copy=False, name=None, verify_integrity=True):
if data is None:
# TODO: Remove this block and associated kwargs; GH#20535
result = cls._generate_range(start, end, periods,
freq=freq, tz=tz, normalize=normalize,
closed=closed, ambiguous=ambiguous)
result.name = name
return result
if is_scalar(data):
raise TypeError("{cls}() must be called with a "
"collection of some kind, {data} was passed"
.format(cls=cls.__name__, data=repr(data)))
# - Cases checked above all return/raise before reaching here - #
# This allows to later ensure that the 'copy' parameter is honored:
if isinstance(data, Index):
ref_to_data = data._data
else:
ref_to_data = data
if name is None and hasattr(data, 'name'):
name = data.name
freq, freq_infer = dtl.maybe_infer_freq(freq)
# if dtype has an embedded tz, capture it
tz = dtl.validate_tz_from_dtype(dtype, tz)
if not isinstance(data, (np.ndarray, Index, ABCSeries, DatetimeArray)):
# other iterable of some kind
if not isinstance(data, (list, tuple)):
data = list(data)
data = np.asarray(data, dtype='O')
elif isinstance(data, ABCSeries):
data = data._values
# data must be Index or np.ndarray here
if not (is_datetime64_dtype(data) or is_datetime64tz_dtype(data) or
is_integer_dtype(data) or lib.infer_dtype(data) == 'integer'):
data = tools.to_datetime(data, dayfirst=dayfirst,
yearfirst=yearfirst)
if isinstance(data, DatetimeArray):
if tz is None:
tz = data.tz
elif data.tz is None:
data = data.tz_localize(tz, ambiguous=ambiguous)
else:
# the tz's must match
if not timezones.tz_compare(tz, data.tz):
msg = ('data is already tz-aware {0}, unable to '
'set specified tz: {1}')
raise TypeError(msg.format(data.tz, tz))
subarr = data._data
if freq is None:
freq = data.freq
verify_integrity = False
elif issubclass(data.dtype.type, np.datetime64):
if data.dtype != _NS_DTYPE:
data = conversion.ensure_datetime64ns(data)
if tz is not None:
# Convert tz-naive to UTC
tz = timezones.maybe_get_tz(tz)
data = conversion.tz_localize_to_utc(data.view('i8'), tz,
ambiguous=ambiguous)
subarr = data.view(_NS_DTYPE)
else:
# must be integer dtype otherwise
# assume this data are epoch timestamps
if data.dtype != _INT64_DTYPE:
data = data.astype(np.int64, copy=False)
subarr = data.view(_NS_DTYPE)
assert isinstance(subarr, np.ndarray), type(subarr)
assert subarr.dtype == 'M8[ns]', subarr.dtype
subarr = cls._simple_new(subarr, name=name, freq=freq, tz=tz)
if dtype is not None:
if not is_dtype_equal(subarr.dtype, dtype):
# dtype must be coerced to DatetimeTZDtype above
if subarr.tz is not None:
raise ValueError("cannot localize from non-UTC data")
if verify_integrity and len(subarr) > 0:
if freq is not None and not freq_infer:
cls._validate_frequency(subarr, freq, ambiguous=ambiguous)
if freq_infer:
subarr.freq = to_offset(subarr.inferred_freq)
return subarr._deepcopy_if_needed(ref_to_data, copy)
@classmethod
def _simple_new(cls, values, name=None, freq=None, tz=None,
dtype=None, **kwargs):
"""
we require the we have a dtype compat for the values
if we are passed a non-dtype compat, then coerce using the constructor
"""
# DatetimeArray._simple_new will accept either i8 or M8[ns] dtypes
assert isinstance(values, np.ndarray), type(values)
result = super(DatetimeIndex, cls)._simple_new(values, freq, tz,
**kwargs)
result.name = name
result._reset_identity()
return result
# --------------------------------------------------------------------
@property
def _values(self):
# tz-naive -> ndarray
# tz-aware -> DatetimeIndex
if self.tz is not None:
return self
else:
return self.values
@property
def tz(self):
# GH 18595
return self._tz
@tz.setter
def tz(self, value):
# GH 3746: Prevent localizing or converting the index by setting tz
raise AttributeError("Cannot directly set timezone. Use tz_localize() "
"or tz_convert() as appropriate")
@property
def size(self):
# TODO: Remove this when we have a DatetimeTZArray
# Necessary to avoid recursion error since DTI._values is a DTI
# for TZ-aware
return self._ndarray_values.size
@property
def shape(self):
# TODO: Remove this when we have a DatetimeTZArray
# Necessary to avoid recursion error since DTI._values is a DTI
# for TZ-aware
return self._ndarray_values.shape
@property
def nbytes(self):
# TODO: Remove this when we have a DatetimeTZArray
# Necessary to avoid recursion error since DTI._values is a DTI
# for TZ-aware
return self._ndarray_values.nbytes
def _mpl_repr(self):
# how to represent ourselves to matplotlib
return libts.ints_to_pydatetime(self.asi8, self.tz)
@cache_readonly
def _is_dates_only(self):
"""Return a boolean if we are only dates (and don't have a timezone)"""
from pandas.io.formats.format import _is_dates_only
return _is_dates_only(self.values) and self.tz is None
@property
def _formatter_func(self):
from pandas.io.formats.format import _get_format_datetime64
formatter = _get_format_datetime64(is_dates_only=self._is_dates_only)
return lambda x: "'%s'" % formatter(x, tz=self.tz)
def __reduce__(self):
# we use a special reudce here because we need
# to simply set the .tz (and not reinterpret it)
d = dict(data=self._data)
d.update(self._get_attributes_dict())
return _new_DatetimeIndex, (self.__class__, d), None
def __setstate__(self, state):
"""Necessary for making this object picklable"""
if isinstance(state, dict):
super(DatetimeIndex, self).__setstate__(state)
elif isinstance(state, tuple):
# < 0.15 compat
if len(state) == 2:
nd_state, own_state = state
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
self.name = own_state[0]
self._freq = own_state[1]
self._tz = timezones.tz_standardize(own_state[2])
# provide numpy < 1.7 compat
if nd_state[2] == 'M8[us]':
new_state = np.ndarray.__reduce__(data.astype('M8[ns]'))
np.ndarray.__setstate__(data, new_state[2])
else: # pragma: no cover
data = np.empty(state)
np.ndarray.__setstate__(data, state)
self._data = data
self._reset_identity()
else:
raise Exception("invalid pickle state")
_unpickle_compat = __setstate__
def _convert_for_op(self, value):
""" Convert value to be insertable to ndarray """
if self._has_same_tz(value):
return _to_m8(value)
raise ValueError('Passed item and index have different timezone')
def _maybe_update_attributes(self, attrs):
""" Update Index attributes (e.g. freq) depending on op """
freq = attrs.get('freq', None)
if freq is not None:
# no need to infer if freq is None
attrs['freq'] = 'infer'
return attrs
def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs):
from pandas.io.formats.format import _get_format_datetime64_from_values
format = _get_format_datetime64_from_values(self, date_format)
return libts.format_array_from_datetime(self.asi8,
tz=self.tz,
format=format,
na_rep=na_rep)
@Appender(_index_shared_docs['astype'])
def astype(self, dtype, copy=True):
dtype = pandas_dtype(dtype)
if (is_datetime64_ns_dtype(dtype) and
not is_dtype_equal(dtype, self.dtype)):
# GH 18951: datetime64_ns dtype but not equal means different tz
new_tz = getattr(dtype, 'tz', None)
if getattr(self.dtype, 'tz', None) is None:
return self.tz_localize(new_tz)
return self.tz_convert(new_tz)
elif is_period_dtype(dtype):
return self.to_period(freq=dtype.freq)
return super(DatetimeIndex, self).astype(dtype, copy=copy)
def _get_time_micros(self):
values = self.asi8
if self.tz is not None and not timezones.is_utc(self.tz):
values = self._local_timestamps()
return fields.get_time_micros(values)
def to_series(self, keep_tz=None, index=None, name=None):
"""
Create a Series with both index and values equal to the index keys
useful with map for returning an indexer based on an index
Parameters
----------
keep_tz : optional, defaults False
Return the data keeping the timezone.
If keep_tz is True:
If the timezone is not set, the resulting
Series will have a datetime64[ns] dtype.
Otherwise the Series will have an datetime64[ns, tz] dtype; the
tz will be preserved.
If keep_tz is False:
Series will have a datetime64[ns] dtype. TZ aware
objects will have the tz removed.
.. versionchanged:: 0.24
The default value will change to True in a future release.
You can set ``keep_tz=True`` to already obtain the future
behaviour and silence the warning.
index : Index, optional
index of resulting Series. If None, defaults to original index
name : string, optional
name of resulting Series. If None, defaults to name of original
index
Returns
-------
Series
"""
from pandas import Series
if index is None:
index = self._shallow_copy()
if name is None:
name = self.name
if keep_tz is None and self.tz is not None:
warnings.warn("The default of the 'keep_tz' keyword will change "
"to True in a future release. You can set "
"'keep_tz=True' to obtain the future behaviour and "
"silence this warning.", FutureWarning, stacklevel=2)
keep_tz = False
elif keep_tz is False:
warnings.warn("Specifying 'keep_tz=False' is deprecated and this "
"option will be removed in a future release. If "
"you want to remove the timezone information, you "
"can do 'idx.tz_convert(None)' before calling "
"'to_series'.", FutureWarning, stacklevel=2)
if keep_tz and self.tz is not None:
# preserve the tz & copy
values = self.copy(deep=True)
else:
values = self.values.copy()
return Series(values, index=index, name=name)
def snap(self, freq='S'):
"""
Snap time stamps to nearest occurring frequency
"""
# Superdumb, punting on any optimizing
freq = to_offset(freq)
snapped = np.empty(len(self), dtype=_NS_DTYPE)
for i, v in enumerate(self):
s = v
if not freq.onOffset(s):
t0 = freq.rollback(s)
t1 = freq.rollforward(s)
if abs(s - t0) < abs(t1 - s):
s = t0
else:
s = t1
snapped[i] = s
# we know it conforms; skip check
return DatetimeIndex(snapped, freq=freq, verify_integrity=False)
# TODO: what about self.name? if so, use shallow_copy?
def unique(self, level=None):
if level is not None:
self._validate_index_level(level)
# TODO(DatetimeArray): change dispatch once inheritance is removed
# call DatetimeArray method
result = DatetimeArray.unique(self)
return self._shallow_copy(result._data)
def union(self, other):
"""
Specialized union for DatetimeIndex objects. If combine
overlapping ranges with the same DateOffset, will be much
faster than Index.union
Parameters
----------
other : DatetimeIndex or array-like
Returns
-------
y : Index or DatetimeIndex
"""
self._assert_can_do_setop(other)
if len(other) == 0 or self.equals(other) or len(self) == 0:
return super(DatetimeIndex, self).union(other)
if not isinstance(other, DatetimeIndex):
try:
other = DatetimeIndex(other)
except TypeError:
pass
this, other = self._maybe_utc_convert(other)
if this._can_fast_union(other):
return this._fast_union(other)
else:
result = Index.union(this, other)
if isinstance(result, DatetimeIndex):
result._tz = timezones.tz_standardize(this.tz)
if (result.freq is None and
(this.freq is not None or other.freq is not None)):
result.freq = to_offset(result.inferred_freq)
return result
def union_many(self, others):
"""
A bit of a hack to accelerate unioning a collection of indexes
"""
this = self
for other in others:
if not isinstance(this, DatetimeIndex):
this = Index.union(this, other)
continue
if not isinstance(other, DatetimeIndex):
try:
other = DatetimeIndex(other)
except TypeError:
pass
this, other = this._maybe_utc_convert(other)
if this._can_fast_union(other):
this = this._fast_union(other)
else:
tz = this.tz
this = Index.union(this, other)
if isinstance(this, DatetimeIndex):
this._tz = timezones.tz_standardize(tz)
return this
def join(self, other, how='left', level=None, return_indexers=False,
sort=False):
"""
See Index.join
"""
if (not isinstance(other, DatetimeIndex) and len(other) > 0 and
other.inferred_type not in ('floating', 'integer', 'mixed-integer',
'mixed-integer-float', 'mixed')):
try:
other = DatetimeIndex(other)
except (TypeError, ValueError):
pass
this, other = self._maybe_utc_convert(other)
return Index.join(this, other, how=how, level=level,
return_indexers=return_indexers, sort=sort)
def _maybe_utc_convert(self, other):
this = self
if isinstance(other, DatetimeIndex):
if self.tz is not None:
if other.tz is None:
raise TypeError('Cannot join tz-naive with tz-aware '
'DatetimeIndex')
elif other.tz is not None:
raise TypeError('Cannot join tz-naive with tz-aware '
'DatetimeIndex')
if not timezones.tz_compare(self.tz, other.tz):
this = self.tz_convert('UTC')
other = other.tz_convert('UTC')
return this, other
def _wrap_joined_index(self, joined, other):
name = get_op_result_name(self, other)
if (isinstance(other, DatetimeIndex) and
self.freq == other.freq and
self._can_fast_union(other)):
joined = self._shallow_copy(joined)
joined.name = name
return joined
else:
tz = getattr(other, 'tz', None)
return self._simple_new(joined, name, tz=tz)
def _can_fast_union(self, other):
if not isinstance(other, DatetimeIndex):
return False
freq = self.freq
if freq is None or freq != other.freq:
return False
if not self.is_monotonic or not other.is_monotonic:
return False
if len(self) == 0 or len(other) == 0:
return True
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
right_start = right[0]
left_end = left[-1]
# Only need to "adjoin", not overlap
try:
return (right_start == left_end + freq) or right_start in left
except (ValueError):
# if we are comparing a freq that does not propagate timezones
# this will raise
return False
def _fast_union(self, other):
if len(other) == 0:
return self.view(type(self))
if len(self) == 0:
return other.view(type(self))
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
left_end = left[-1]
right_end = right[-1]
# TODO: consider re-implementing freq._should_cache for fastpath
# concatenate dates
if left_end < right_end:
loc = right.searchsorted(left_end, side='right')
right_chunk = right.values[loc:]
dates = _concat._concat_compat((left.values, right_chunk))
return self._shallow_copy(dates)
else:
return left
def _wrap_setop_result(self, other, result):
name = get_op_result_name(self, other)
if not timezones.tz_compare(self.tz, other.tz):
raise ValueError('Passed item and index have different timezone')
return self._shallow_copy(result, name=name, freq=None, tz=self.tz)
def intersection(self, other):
"""
Specialized intersection for DatetimeIndex objects. May be much faster
than Index.intersection
Parameters
----------
other : DatetimeIndex or array-like
Returns
-------
y : Index or DatetimeIndex
"""
self._assert_can_do_setop(other)
if self.equals(other):
return self._get_reconciled_name_object(other)
if not isinstance(other, DatetimeIndex):
try:
other = DatetimeIndex(other)
except (TypeError, ValueError):
pass
result = Index.intersection(self, other)
if isinstance(result, DatetimeIndex):
if result.freq is None:
result.freq = to_offset(result.inferred_freq)
return result
elif (other.freq is None or self.freq is None or
other.freq != self.freq or
not other.freq.isAnchored() or
(not self.is_monotonic or not other.is_monotonic)):
result = Index.intersection(self, other)
result = self._shallow_copy(result._values, name=result.name,
tz=result.tz, freq=None)
if result.freq is None:
result.freq = to_offset(result.inferred_freq)
return result
if len(self) == 0:
return self
if len(other) == 0:
return other
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
end = min(left[-1], right[-1])
start = right[0]
if end < start:
return type(self)(data=[])
else:
lslice = slice(*left.slice_locs(start, end))
left_chunk = left.values[lslice]
return self._shallow_copy(left_chunk)
def _parsed_string_to_bounds(self, reso, parsed):
"""
Calculate datetime bounds for parsed time string and its resolution.
Parameters
----------
reso : Resolution
Resolution provided by parsed string.
parsed : datetime
Datetime from parsed string.
Returns
-------
lower, upper: pd.Timestamp
"""
if reso == 'year':
return (Timestamp(datetime(parsed.year, 1, 1), tz=self.tz),
Timestamp(datetime(parsed.year, 12, 31, 23,
59, 59, 999999), tz=self.tz))
elif reso == 'month':
d = ccalendar.get_days_in_month(parsed.year, parsed.month)
return (Timestamp(datetime(parsed.year, parsed.month, 1),
tz=self.tz),
Timestamp(datetime(parsed.year, parsed.month, d, 23,
59, 59, 999999), tz=self.tz))
elif reso == 'quarter':
qe = (((parsed.month - 1) + 2) % 12) + 1 # two months ahead
d = ccalendar.get_days_in_month(parsed.year, qe) # at end of month
return (Timestamp(datetime(parsed.year, parsed.month, 1),
tz=self.tz),
Timestamp(datetime(parsed.year, qe, d, 23, 59,
59, 999999), tz=self.tz))
elif reso == 'day':
st = datetime(parsed.year, parsed.month, parsed.day)
return (Timestamp(st, tz=self.tz),
Timestamp(Timestamp(st + offsets.Day(),
tz=self.tz).value - 1))
elif reso == 'hour':
st = datetime(parsed.year, parsed.month, parsed.day,
hour=parsed.hour)
return (Timestamp(st, tz=self.tz),
Timestamp(Timestamp(st + offsets.Hour(),
tz=self.tz).value - 1))
elif reso == 'minute':
st = datetime(parsed.year, parsed.month, parsed.day,
hour=parsed.hour, minute=parsed.minute)
return (Timestamp(st, tz=self.tz),
Timestamp(Timestamp(st + offsets.Minute(),
tz=self.tz).value - 1))
elif reso == 'second':
st = datetime(parsed.year, parsed.month, parsed.day,
hour=parsed.hour, minute=parsed.minute,
second=parsed.second)
return (Timestamp(st, tz=self.tz),
Timestamp(Timestamp(st + offsets.Second(),
tz=self.tz).value - 1))
elif reso == 'microsecond':
st = datetime(parsed.year, parsed.month, parsed.day,
parsed.hour, parsed.minute, parsed.second,
parsed.microsecond)
return (Timestamp(st, tz=self.tz), Timestamp(st, tz=self.tz))
else:
raise KeyError
def _partial_date_slice(self, reso, parsed, use_lhs=True, use_rhs=True):
is_monotonic = self.is_monotonic
if (is_monotonic and reso in ['day', 'hour', 'minute', 'second'] and
self._resolution >= Resolution.get_reso(reso)):
# These resolution/monotonicity validations came from GH3931,
# GH3452 and GH2369.
# See also GH14826
raise KeyError
if reso == 'microsecond':
# _partial_date_slice doesn't allow microsecond resolution, but
# _parsed_string_to_bounds allows it.
raise KeyError
t1, t2 = self._parsed_string_to_bounds(reso, parsed)
stamps = self.asi8
if is_monotonic:
# we are out of range
if (len(stamps) and ((use_lhs and t1.value < stamps[0] and
t2.value < stamps[0]) or
((use_rhs and t1.value > stamps[-1] and
t2.value > stamps[-1])))):
raise KeyError
# a monotonic (sorted) series can be sliced
left = stamps.searchsorted(
t1.value, side='left') if use_lhs else None
right = stamps.searchsorted(
t2.value, side='right') if use_rhs else None
return slice(left, right)
lhs_mask = (stamps >= t1.value) if use_lhs else True
rhs_mask = (stamps <= t2.value) if use_rhs else True
# try to find a the dates
return (lhs_mask & rhs_mask).nonzero()[0]
def _maybe_promote(self, other):
if other.inferred_type == 'date':
other = DatetimeIndex(other)
return self, other
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
if isinstance(key, datetime):
# needed to localize naive datetimes
if self.tz is not None:
if key.tzinfo is not None:
key = Timestamp(key).tz_convert(self.tz)
else:
key = Timestamp(key).tz_localize(self.tz)
return self.get_value_maybe_box(series, key)
if isinstance(key, time):
locs = self.indexer_at_time(key)
return series.take(locs)
try:
return com.maybe_box(self, Index.get_value(self, series, key),
series, key)
except KeyError:
try:
loc = self._get_string_slice(key)
return series[loc]
except (TypeError, ValueError, KeyError):
pass
try:
return self.get_value_maybe_box(series, key)
except (TypeError, ValueError, KeyError):
raise KeyError(key)
def get_value_maybe_box(self, series, key):
# needed to localize naive datetimes
if self.tz is not None:
key = Timestamp(key)
if key.tzinfo is not None:
key = key.tz_convert(self.tz)
else:
key = key.tz_localize(self.tz)
elif not isinstance(key, Timestamp):
key = Timestamp(key)
values = self._engine.get_value(com.values_from_object(series),
key, tz=self.tz)
return com.maybe_box(self, values, series, key)
def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
if tolerance is not None:
# try converting tolerance now, so errors don't get swallowed by
# the try/except clauses below
tolerance = self._convert_tolerance(tolerance, np.asarray(key))
if isinstance(key, datetime):
# needed to localize naive datetimes
if key.tzinfo is None:
key = Timestamp(key, tz=self.tz)
else:
key = Timestamp(key).tz_convert(self.tz)
return Index.get_loc(self, key, method, tolerance)
elif isinstance(key, timedelta):
# GH#20464