These are the changes in pandas 1.4.0. See :ref:`release` for a full changelog including other versions of pandas.
{{ header }}
Previously, warning messages may have pointed to lines within the pandas
library. Running the script setting_with_copy_warning.py
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
df[:2].loc[:, 'a'] = 5
with pandas 1.3 resulted in:
.../site-packages/pandas/core/indexing.py:1951: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
This made it difficult to determine where the warning was being generated from. Now pandas will inspect the call stack, reporting the first line outside of the pandas library that gave rise to the warning. The output of the above script is now:
setting_with_copy_warning.py:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Until now, passing a custom :class:`ExtensionArray` to pd.Index
would cast
the array to object
dtype. Now :class:`Index` can directly hold arbitrary
ExtensionArrays (:issue:`43930`).
Previous behavior:
.. ipython:: python arr = pd.array([1, 2, pd.NA]) idx = pd.Index(arr)
In the old behavior, idx
would be object-dtype:
Previous behavior:
In [1]: idx
Out[1]: Index([1, 2, <NA>], dtype='object')
With the new behavior, we keep the original dtype:
New behavior:
.. ipython:: python idx
One exception to this is SparseArray
, which will continue to cast to numpy
dtype until pandas 2.0. At that point it will retain its dtype like other
ExtensionArrays.
:class:`.Styler` has been further developed in 1.4.0. The following general enhancements have been made:
- Styling and formatting of indexes has been added, with :meth:`.Styler.apply_index`, :meth:`.Styler.applymap_index` and :meth:`.Styler.format_index`. These mirror the signature of the methods already used to style and format data values, and work with both HTML, LaTeX and Excel format (:issue:`41893`, :issue:`43101`, :issue:`41993`, :issue:`41995`)
- The new method :meth:`.Styler.hide` deprecates :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` (:issue:`43758`)
- The keyword arguments
level
andnames
have been added to :meth:`.Styler.hide` (and implicitly to the deprecated methods :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns`) for additional control of visibility of MultiIndexes and of Index names (:issue:`25475`, :issue:`43404`, :issue:`43346`)- The :meth:`.Styler.export` and :meth:`.Styler.use` have been updated to address all of the added functionality from v1.2.0 and v1.3.0 (:issue:`40675`)
- Global options under the category
pd.options.styler
have been extended to configure defaultStyler
properties which address formatting, encoding, and HTML and LaTeX rendering. Note that formerlyStyler
relied ondisplay.html.use_mathjax
, which has now been replaced bystyler.html.mathjax
(:issue:`41395`)- Validation of certain keyword arguments, e.g.
caption
(:issue:`43368`)- Various bug fixes as recorded below
Additionally there are specific enhancements to the HTML specific rendering:
- :meth:`.Styler.bar` introduces additional arguments to control alignment and display (:issue:`26070`, :issue:`36419`), and it also validates the input arguments
width
andheight
(:issue:`42511`)- :meth:`.Styler.to_html` introduces keyword arguments
sparse_index
,sparse_columns
,bold_headers
,caption
,max_rows
andmax_columns
(:issue:`41946`, :issue:`43149`, :issue:`42972`)- :meth:`.Styler.to_html` omits CSSStyle rules for hidden table elements as a performance enhancement (:issue:`43619`)
- Custom CSS classes can now be directly specified without string replacement (:issue:`43686`)
- Ability to render hyperlinks automatically via a new
hyperlinks
formatting keyword argument (:issue:`45058`)
There are also some LaTeX specific enhancements:
- :meth:`.Styler.to_latex` introduces keyword argument
environment
, which also allows a specific "longtable" entry through a separate jinja2 template (:issue:`41866`)- Naive sparsification is now possible for LaTeX without the necessity of including the multirow package (:issue:`43369`)
- cline support has been added for :class:`MultiIndex` row sparsification through a keyword argument (:issue:`45138`)
:func:`pandas.read_csv` now accepts engine="pyarrow"
(requires at least
pyarrow
1.0.1) as an argument, allowing for faster csv parsing on multicore
machines with pyarrow installed. See the :doc:`I/O docs </user_guide/io>` for
more info. (:issue:`23697`, :issue:`43706`)
Added rank
function to :class:`Rolling` and :class:`Expanding`. The new
function supports the method
, ascending
, and pct
flags of
:meth:`DataFrame.rank`. The method
argument supports min
, max
, and
average
ranking methods.
Example:
.. ipython:: python s = pd.Series([1, 4, 2, 3, 5, 3]) s.rolling(3).rank() s.rolling(3).rank(method="max")
It is now possible to specify positional ranges relative to the ends of each group.
Negative arguments for :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` now work correctly and result in ranges relative to the end and start of each group, respectively. Previously, negative arguments returned empty frames.
.. ipython:: python df = pd.DataFrame([["g", "g0"], ["g", "g1"], ["g", "g2"], ["g", "g3"], ["h", "h0"], ["h", "h1"]], columns=["A", "B"]) df.groupby("A").head(-1)
:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept a slice or list of integers and slices.
.. ipython:: python df.groupby("A").nth(slice(1, -1)) df.groupby("A").nth([slice(None, 1), slice(-1, None)])
:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept index notation.
.. ipython:: python df.groupby("A").nth[1, -1] df.groupby("A").nth[1:-1] df.groupby("A").nth[:1, -1:]
A new 'tight'
dictionary format that preserves :class:`MultiIndex` entries
and names is now available with the :meth:`DataFrame.from_dict` and
:meth:`DataFrame.to_dict` methods and can be used with the standard json
library to produce a tight representation of :class:`DataFrame` objects
(:issue:`4889`).
.. ipython:: python df = pd.DataFrame.from_records( [[1, 3], [2, 4]], index=pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")], names=["n1", "n2"]), columns=pd.MultiIndex.from_tuples([("x", 1), ("y", 2)], names=["z1", "z2"]), ) df df.to_dict(orient='tight')
- :meth:`concat` will preserve the
attrs
when it is the same for all objects and discard theattrs
when they are different (:issue:`41828`) - :class:`DataFrameGroupBy` operations with
as_index=False
now correctly retainExtensionDtype
dtypes for columns being grouped on (:issue:`41373`) - Add support for assigning values to
by
argument in :meth:`DataFrame.plot.hist` and :meth:`DataFrame.plot.box` (:issue:`15079`) - :meth:`Series.sample`, :meth:`DataFrame.sample`, :meth:`.DataFrameGroupBy.sample`, and :meth:`.SeriesGroupBy.sample` now accept a
np.random.Generator
as input torandom_state
. A generator will be more performant, especially withreplace=False
(:issue:`38100`) - :meth:`Series.ewm` and :meth:`DataFrame.ewm` now support a
method
argument with a'table'
option that performs the windowing operation over an entire :class:`DataFrame`. See :ref:`Window Overview <window.overview>` for performance and functional benefits (:issue:`42273`) - :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax`, and :meth:`.SeriesGroupBy.cummax` now support the argument
skipna
(:issue:`34047`) - :meth:`read_table` now supports the argument
storage_options
(:issue:`39167`) - :meth:`DataFrame.to_stata` and :meth:`StataWriter` now accept the keyword only argument
value_labels
to save labels for non-categorical columns (:issue:`38454`) - Methods that relied on hashmap based algos such as :meth:`DataFrameGroupBy.value_counts`, :meth:`DataFrameGroupBy.count` and :func:`factorize` ignored imaginary component for complex numbers (:issue:`17927`)
- Add :meth:`Series.str.removeprefix` and :meth:`Series.str.removesuffix` introduced in Python 3.9 to remove pre-/suffixes from string-type :class:`Series` (:issue:`36944`)
- Attempting to write into a file in missing parent directory with :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_html`, :meth:`DataFrame.to_excel`, :meth:`DataFrame.to_feather`, :meth:`DataFrame.to_parquet`, :meth:`DataFrame.to_stata`, :meth:`DataFrame.to_json`, :meth:`DataFrame.to_pickle`, and :meth:`DataFrame.to_xml` now explicitly mentions missing parent directory, the same is true for :class:`Series` counterparts (:issue:`24306`)
- Indexing with
.loc
and.iloc
now supportsEllipsis
(:issue:`37750`) - :meth:`IntegerArray.all` , :meth:`IntegerArray.any`, :meth:`FloatingArray.any`, and :meth:`FloatingArray.all` use Kleene logic (:issue:`41967`)
- Added support for nullable boolean and integer types in :meth:`DataFrame.to_stata`, :class:`~pandas.io.stata.StataWriter`, :class:`~pandas.io.stata.StataWriter117`, and :class:`~pandas.io.stata.StataWriterUTF8` (:issue:`40855`)
- :meth:`DataFrame.__pos__` and :meth:`DataFrame.__neg__` now retain
ExtensionDtype
dtypes (:issue:`43883`) - The error raised when an optional dependency can't be imported now includes the original exception, for easier investigation (:issue:`43882`)
- Added :meth:`.ExponentialMovingWindow.sum` (:issue:`13297`)
- :meth:`Series.str.split` now supports a
regex
argument that explicitly specifies whether the pattern is a regular expression. Default isNone
(:issue:`43563`, :issue:`32835`, :issue:`25549`) - :meth:`DataFrame.dropna` now accepts a single label as
subset
along with array-like (:issue:`41021`) - Added :meth:`DataFrameGroupBy.value_counts` (:issue:`43564`)
- :func:`read_csv` now accepts a
callable
function inon_bad_lines
whenengine="python"
for custom handling of bad lines (:issue:`5686`) - :class:`ExcelWriter` argument
if_sheet_exists="overlay"
option added (:issue:`40231`) - :meth:`read_excel` now accepts a
decimal
argument that allow the user to specify the decimal point when parsing string columns to numeric (:issue:`14403`) - :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.std`, :meth:`.SeriesGroupBy.std`, :meth:`.DataFrameGroupBy.var`, :meth:`.SeriesGroupBy.var`, :meth:`.DataFrameGroupBy.sum`, and :meth:`.SeriesGroupBy.sum` now support Numba execution with the
engine
keyword (:issue:`43731`, :issue:`44862`, :issue:`44939`) - :meth:`Timestamp.isoformat` now handles the
timespec
argument from the basedatetime
class (:issue:`26131`) - :meth:`NaT.to_numpy`
dtype
argument is now respected, sonp.timedelta64
can be returned (:issue:`44460`) - New option
display.max_dir_items
customizes the number of columns added to :meth:`Dataframe.__dir__` and suggested for tab completion (:issue:`37996`) - Added "Juneteenth National Independence Day" to
USFederalHolidayCalendar
(:issue:`44574`) - :meth:`.Rolling.var`, :meth:`.Expanding.var`, :meth:`.Rolling.std`, and :meth:`.Expanding.std` now support Numba execution with the
engine
keyword (:issue:`44461`) - :meth:`Series.info` has been added, for compatibility with :meth:`DataFrame.info` (:issue:`5167`)
- Implemented :meth:`IntervalArray.min` and :meth:`IntervalArray.max`, as a result of which
min
andmax
now work for :class:`IntervalIndex`, :class:`Series` and :class:`DataFrame` withIntervalDtype
(:issue:`44746`) - :meth:`UInt64Index.map` now retains
dtype
where possible (:issue:`44609`) - :meth:`read_json` can now parse unsigned long long integers (:issue:`26068`)
- :meth:`DataFrame.take` now raises a
TypeError
when passed a scalar for the indexer (:issue:`42875`) - :meth:`is_list_like` now identifies duck-arrays as list-like unless
.ndim == 0
(:issue:`35131`) - :class:`ExtensionDtype` and :class:`ExtensionArray` are now (de)serialized when exporting a :class:`DataFrame` with :meth:`DataFrame.to_json` using
orient='table'
(:issue:`20612`, :issue:`44705`) - Add support for Zstandard compression to :meth:`DataFrame.to_pickle`/:meth:`read_pickle` and friends (:issue:`43925`)
- :meth:`DataFrame.to_sql` now returns an
int
of the number of written rows (:issue:`23998`)
These are bug fixes that might have notable behavior changes.
The dayfirst
option of :func:`to_datetime` isn't strict, and this can lead
to surprising behavior:
.. ipython:: python :okwarning: pd.to_datetime(["31-12-2021"], dayfirst=False)
Now, a warning will be raised if a date string cannot be parsed accordance to
the given dayfirst
value when the value is a delimited date string (e.g.
31-12-2012
).
Note
This behaviour change has been reverted in pandas 1.4.3.
When using :func:`concat` to concatenate two or more :class:`DataFrame` objects, if one of the DataFrames was empty or had all-NA values, its dtype was sometimes ignored when finding the concatenated dtype. These are now consistently not ignored (:issue:`43507`).
.. ipython:: python :okwarning: df1 = pd.DataFrame({"bar": [pd.Timestamp("2013-01-01")]}, index=range(1)) df2 = pd.DataFrame({"bar": np.nan}, index=range(1, 2)) res = pd.concat([df1, df2])
Previously, the float-dtype in df2
would be ignored so the result dtype
would be datetime64[ns]
. As a result, the np.nan
would be cast to
NaT
.
Previous behavior:
In [4]: res
Out[4]:
bar
0 2013-01-01
1 NaT
Now the float-dtype is respected. Since the common dtype for these DataFrames is
object, the np.nan
is retained.
New behavior:
In [4]: res
Out[4]:
bar
0 2013-01-01 00:00:00
1 NaN
:meth:`Series.value_counts` and :meth:`Series.mode` no longer coerce None
,
NaT
and other null-values to a NaN-value for np.object_
-dtype. This
behavior is now consistent with unique
, isin
and others
(:issue:`42688`).
.. ipython:: python s = pd.Series([True, None, pd.NaT, None, pd.NaT, None]) res = s.value_counts(dropna=False)
Previously, all null-values were replaced by a NaN-value.
Previous behavior:
In [3]: res
Out[3]:
NaN 5
True 1
dtype: int64
Now null-values are no longer mangled.
New behavior:
.. ipython:: python res
:func:`read_csv` no longer renames unique column labels which conflict with the target names of duplicated columns. Already existing columns are skipped, i.e. the next available index is used for the target column name (:issue:`14704`).
.. ipython:: python import io data = "a,a,a.1\n1,2,3" res = pd.read_csv(io.StringIO(data))
Previously, the second column was called a.1
, while the third column was
also renamed to a.1.1
.
Previous behavior:
In [3]: res
Out[3]:
a a.1 a.1.1
0 1 2 3
Now the renaming checks if a.1
already exists when changing the name of the
second column and jumps this index. The second column is instead renamed to
a.2
.
New behavior:
.. ipython:: python res
Previously :meth:`DataFrame.pivot_table` and :meth:`DataFrame.unstack` would
raise a ValueError
if the operation could produce a result with more than
2**31 - 1
elements. This operation now raises a
:class:`errors.PerformanceWarning` instead (:issue:`26314`).
Previous behavior:
In [3]: df = DataFrame({"ind1": np.arange(2 ** 16), "ind2": np.arange(2 ** 16), "count": 0})
In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
ValueError: Unstacked DataFrame is too big, causing int32 overflow
New behavior:
In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
PerformanceWarning: The following operation may generate 4294967296 cells in the resulting pandas object.
:meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` are designed to be flexible, allowing users to perform
aggregations, transformations, filters, and use it with user-defined functions
that might not fall into any of these categories. As part of this, apply will
attempt to detect when an operation is a transform, and in such a case, the
result will have the same index as the input. In order to determine if the
operation is a transform, pandas compares the input's index to the result's and
determines if it has been mutated. Previously in pandas 1.3, different code
paths used different definitions of "mutated": some would use Python's is
whereas others would test only up to equality.
This inconsistency has been removed, pandas now tests up to equality.
.. ipython:: python def func(x): return x.copy() df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]}) df
Previous behavior:
In [3]: df.groupby(['a']).apply(func)
Out[3]:
a b c
a
1 0 1 3 5
2 1 2 4 6
In [4]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
Out[4]:
c
a b
1 3 5
2 4 6
In the examples above, the first uses a code path where pandas uses is
and
determines that func
is not a transform whereas the second tests up to
equality and determines that func
is a transform. In the first case, the
result's index is not the same as the input's.
New behavior:
In [5]: df.groupby(['a']).apply(func)
Out[5]:
a b c
0 1 3 5
1 2 4 6
In [6]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
Out[6]:
c
a b
1 3 5
2 4 6
Now in both cases it is determined that func
is a transform. In each case,
the result has the same index as the input.
pandas 1.4.0 supports Python 3.8 and higher.
Some minimum supported versions of dependencies were updated. If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.18.5 | X | X |
pytz | 2020.1 | X | X |
python-dateutil | 2.8.1 | X | X |
bottleneck | 1.3.1 | X | |
numexpr | 2.7.1 | X | |
pytest (dev) | 6.0 | ||
mypy (dev) | 0.930 | X |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
beautifulsoup4 | 4.8.2 | X |
fastparquet | 0.4.0 | |
fsspec | 0.7.4 | |
gcsfs | 0.6.0 | |
lxml | 4.5.0 | X |
matplotlib | 3.3.2 | X |
numba | 0.50.1 | X |
openpyxl | 3.0.3 | X |
pandas-gbq | 0.14.0 | X |
pyarrow | 1.0.1 | X |
pymysql | 0.10.1 | X |
pytables | 3.6.1 | X |
s3fs | 0.4.0 | |
scipy | 1.4.1 | X |
sqlalchemy | 1.4.0 | X |
tabulate | 0.8.7 | |
xarray | 0.15.1 | X |
xlrd | 2.0.1 | X |
xlsxwriter | 1.2.2 | X |
xlwt | 1.3.0 |
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
:meth:`Index.get_indexer_for` no longer accepts keyword arguments (other than
target
); in the past these would be silently ignored if the index was not unique (:issue:`42310`)Change in the position of the
min_rows
argument in :meth:`DataFrame.to_string` due to change in the docstring (:issue:`44304`)Reduction operations for :class:`DataFrame` or :class:`Series` now raising a
ValueError
whenNone
is passed forskipna
(:issue:`44178`):func:`read_csv` and :func:`read_html` no longer raising an error when one of the header rows consists only of
Unnamed:
columns (:issue:`13054`)Changed the
name
attribute of several holidays inUSFederalHolidayCalendar
to match official federal holiday names specifically:- "New Year's Day" gains the possessive apostrophe
- "Presidents Day" becomes "Washington's Birthday"
- "Martin Luther King Jr. Day" is now "Birthday of Martin Luther King, Jr."
- "July 4th" is now "Independence Day"
- "Thanksgiving" is now "Thanksgiving Day"
- "Christmas" is now "Christmas Day"
- Added "Juneteenth National Independence Day"
:class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` have been deprecated in favor of the base :class:`Index` class and will be removed in Pandas 2.0 (:issue:`43028`).
For constructing a numeric index, you can use the base :class:`Index` class instead specifying the data type (which will also work on older pandas releases):
# replace
pd.Int64Index([1, 2, 3])
# with
pd.Index([1, 2, 3], dtype="int64")
For checking the data type of an index object, you can replace isinstance
checks with checking the dtype
:
# replace
isinstance(idx, pd.Int64Index)
# with
idx.dtype == "int64"
Currently, in order to maintain backward compatibility, calls to :class:`Index` will continue to return :class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` when given numeric data, but in the future, an :class:`Index` will be returned.
Current behavior:
In [1]: pd.Index([1, 2, 3], dtype="int32")
Out [1]: Int64Index([1, 2, 3], dtype='int64')
In [1]: pd.Index([1, 2, 3], dtype="uint64")
Out [1]: UInt64Index([1, 2, 3], dtype='uint64')
Future behavior:
In [3]: pd.Index([1, 2, 3], dtype="int32")
Out [3]: Index([1, 2, 3], dtype='int32')
In [4]: pd.Index([1, 2, 3], dtype="uint64")
Out [4]: Index([1, 2, 3], dtype='uint64')
:meth:`DataFrame.append` and :meth:`Series.append` have been deprecated and will be removed in a future version. Use :func:`pandas.concat` instead (:issue:`35407`).
Deprecated syntax
In [1]: pd.Series([1, 2]).append(pd.Series([3, 4])
Out [1]:
<stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
0 1
1 2
0 3
1 4
dtype: int64
In [2]: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
In [3]: df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
In [4]: df1.append(df2)
Out [4]:
<stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
A B
0 1 2
1 3 4
0 5 6
1 7 8
Recommended syntax
.. ipython:: python pd.concat([pd.Series([1, 2]), pd.Series([3, 4])]) df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) pd.concat([df1, df2])
- Deprecated :meth:`Index.is_type_compatible` (:issue:`42113`)
- Deprecated
method
argument in :meth:`Index.get_loc`, useindex.get_indexer([label], method=...)
instead (:issue:`42269`) - Deprecated treating integer keys in :meth:`Series.__setitem__` as positional when the index is a :class:`Float64Index` not containing the key, a :class:`IntervalIndex` with no entries containing the key, or a :class:`MultiIndex` with leading :class:`Float64Index` level not containing the key (:issue:`33469`)
- Deprecated treating
numpy.datetime64
objects as UTC times when passed to the :class:`Timestamp` constructor along with a timezone. In a future version, these will be treated as wall-times. To retain the old behavior, useTimestamp(dt64).tz_localize("UTC").tz_convert(tz)
(:issue:`24559`) - Deprecated ignoring missing labels when indexing with a sequence of labels on a level of a :class:`MultiIndex` (:issue:`42351`)
- Creating an empty :class:`Series` without a
dtype
will now raise a more visibleFutureWarning
instead of aDeprecationWarning
(:issue:`30017`) - Deprecated the
kind
argument in :meth:`Index.get_slice_bound`, :meth:`Index.slice_indexer`, and :meth:`Index.slice_locs`; in a future version passingkind
will raise (:issue:`42857`) - Deprecated dropping of nuisance columns in :class:`Rolling`, :class:`Expanding`, and :class:`EWM` aggregations (:issue:`42738`)
- Deprecated :meth:`Index.reindex` with a non-unique :class:`Index` (:issue:`42568`)
- Deprecated :meth:`.Styler.render` in favor of :meth:`.Styler.to_html` (:issue:`42140`)
- Deprecated :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` in favor of :meth:`.Styler.hide` (:issue:`43758`)
- Deprecated passing in a string column label into
times
in :meth:`DataFrame.ewm` (:issue:`43265`) - Deprecated the
include_start
andinclude_end
arguments in :meth:`DataFrame.between_time`; in a future version passinginclude_start
orinclude_end
will raise (:issue:`40245`) - Deprecated the
squeeze
argument to :meth:`read_csv`, :meth:`read_table`, and :meth:`read_excel`. Users should squeeze the :class:`DataFrame` afterwards with.squeeze("columns")
instead (:issue:`43242`) - Deprecated the
index
argument to :class:`SparseArray` construction (:issue:`23089`) - Deprecated the
closed
argument in :meth:`date_range` and :meth:`bdate_range` in favor ofinclusive
argument; In a future version passingclosed
will raise (:issue:`40245`) - Deprecated :meth:`.Rolling.validate`, :meth:`.Expanding.validate`, and :meth:`.ExponentialMovingWindow.validate` (:issue:`43665`)
- Deprecated silent dropping of columns that raised a
TypeError
in :class:`Series.transform` and :class:`DataFrame.transform` when used with a dictionary (:issue:`43740`) - Deprecated silent dropping of columns that raised a
TypeError
,DataError
, and some cases ofValueError
in :meth:`Series.aggregate`, :meth:`DataFrame.aggregate`, :meth:`Series.groupby.aggregate`, and :meth:`DataFrame.groupby.aggregate` when used with a list (:issue:`43740`) - Deprecated casting behavior when setting timezone-aware value(s) into a timezone-aware :class:`Series` or :class:`DataFrame` column when the timezones do not match. Previously this cast to object dtype. In a future version, the values being inserted will be converted to the series or column's existing timezone (:issue:`37605`)
- Deprecated casting behavior when passing an item with mismatched-timezone to :meth:`DatetimeIndex.insert`, :meth:`DatetimeIndex.putmask`, :meth:`DatetimeIndex.where` :meth:`DatetimeIndex.fillna`, :meth:`Series.mask`, :meth:`Series.where`, :meth:`Series.fillna`, :meth:`Series.shift`, :meth:`Series.replace`, :meth:`Series.reindex` (and :class:`DataFrame` column analogues). In the past this has cast to object
dtype
. In a future version, these will cast the passed item to the index or series's timezone (:issue:`37605`, :issue:`44940`) - Deprecated the
prefix
keyword argument in :func:`read_csv` and :func:`read_table`, in a future version the argument will be removed (:issue:`43396`) - Deprecated passing non boolean argument to
sort
in :func:`concat` (:issue:`41518`) - Deprecated passing arguments as positional for :func:`read_fwf` other than
filepath_or_buffer
(:issue:`41485`) - Deprecated passing arguments as positional for :func:`read_xml` other than
path_or_buffer
(:issue:`45133`) - Deprecated passing
skipna=None
for :meth:`DataFrame.mad` and :meth:`Series.mad`, passskipna=True
instead (:issue:`44580`) - Deprecated the behavior of :func:`to_datetime` with the string "now" with
utc=False
; in a future version this will matchTimestamp("now")
, which in turn matches :meth:`Timestamp.now` returning the local time (:issue:`18705`) - Deprecated :meth:`DateOffset.apply`, use
offset + other
instead (:issue:`44522`) - Deprecated parameter
names
in :meth:`Index.copy` (:issue:`44916`) - A deprecation warning is now shown for :meth:`DataFrame.to_latex` indicating the arguments signature may change and emulate more the arguments to :meth:`.Styler.to_latex` in future versions (:issue:`44411`)
- Deprecated behavior of :func:`concat` between objects with bool-dtype and numeric-dtypes; in a future version these will cast to object dtype instead of coercing bools to numeric values (:issue:`39817`)
- Deprecated :meth:`Categorical.replace`, use :meth:`Series.replace` instead (:issue:`44929`)
- Deprecated passing
set
ordict
as indexer for :meth:`DataFrame.loc.__setitem__`, :meth:`DataFrame.loc.__getitem__`, :meth:`Series.loc.__setitem__`, :meth:`Series.loc.__getitem__`, :meth:`DataFrame.__getitem__`, :meth:`Series.__getitem__` and :meth:`Series.__setitem__` (:issue:`42825`) - Deprecated :meth:`Index.__getitem__` with a bool key; use
index.values[key]
to get the old behavior (:issue:`44051`) - Deprecated downcasting column-by-column in :meth:`DataFrame.where` with integer-dtypes (:issue:`44597`)
- Deprecated :meth:`DatetimeIndex.union_many`, use :meth:`DatetimeIndex.union` instead (:issue:`44091`)
- Deprecated :meth:`.Groupby.pad` in favor of :meth:`.Groupby.ffill` (:issue:`33396`)
- Deprecated :meth:`.Groupby.backfill` in favor of :meth:`.Groupby.bfill` (:issue:`33396`)
- Deprecated :meth:`.Resample.pad` in favor of :meth:`.Resample.ffill` (:issue:`33396`)
- Deprecated :meth:`.Resample.backfill` in favor of :meth:`.Resample.bfill` (:issue:`33396`)
- Deprecated
numeric_only=None
in :meth:`DataFrame.rank`; in a future versionnumeric_only
must be eitherTrue
orFalse
(the default) (:issue:`45036`) - Deprecated the behavior of :meth:`Timestamp.utcfromtimestamp`, in the future it will return a timezone-aware UTC :class:`Timestamp` (:issue:`22451`)
- Deprecated :meth:`NaT.freq` (:issue:`45071`)
- Deprecated behavior of :class:`Series` and :class:`DataFrame` construction when passed float-dtype data containing
NaN
and an integer dtype ignoring the dtype argument; in a future version this will raise (:issue:`40110`) - Deprecated the behaviour of :meth:`Series.to_frame` and :meth:`Index.to_frame` to ignore the
name
argument whenname=None
. Currently, this means to preserve the existing name, but in the future explicitly passingname=None
will setNone
as the name of the column in the resulting DataFrame (:issue:`44212`)
- Performance improvement in :meth:`.DataFrameGroupBy.sample` and :meth:`.SeriesGroupBy.sample`, especially when
weights
argument provided (:issue:`34483`) - Performance improvement when converting non-string arrays to string arrays (:issue:`34483`)
- Performance improvement in :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` for user-defined functions (:issue:`41598`)
- Performance improvement in constructing :class:`DataFrame` objects (:issue:`42631`, :issue:`43142`, :issue:`43147`, :issue:`43307`, :issue:`43144`, :issue:`44826`)
- Performance improvement in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` when
fill_value
argument is provided (:issue:`26615`) - Performance improvement in :meth:`DataFrame.corr` for
method=pearson
on data without missing values (:issue:`40956`) - Performance improvement in some :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` operations (:issue:`42992`, :issue:`43578`)
- Performance improvement in :func:`read_stata` (:issue:`43059`, :issue:`43227`)
- Performance improvement in :func:`read_sas` (:issue:`43333`)
- Performance improvement in :meth:`to_datetime` with
uint
dtypes (:issue:`42606`) - Performance improvement in :meth:`to_datetime` with
infer_datetime_format
set toTrue
(:issue:`43901`) - Performance improvement in :meth:`Series.sparse.to_coo` (:issue:`42880`)
- Performance improvement in indexing with a :class:`UInt64Index` (:issue:`43862`)
- Performance improvement in indexing with a :class:`Float64Index` (:issue:`43705`)
- Performance improvement in indexing with a non-unique :class:`Index` (:issue:`43792`)
- Performance improvement in indexing with a listlike indexer on a :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in indexing with a :class:`MultiIndex` indexer on another :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` (:issue:`43469`, :issue:`43725`)
- Performance improvement in :meth:`.DataFrameGroupBy.count` and :meth:`.SeriesGroupBy.count` (:issue:`43730`, :issue:`43694`)
- Performance improvement in :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` (:issue:`43675`, :issue:`42841`)
- Performance improvement in :meth:`.DataFrameGroupBy.std` and :meth:`.SeriesGroupBy.std` (:issue:`43115`, :issue:`43576`)
- Performance improvement in :meth:`.DataFrameGroupBy.cumsum` and :meth:`.SeriesGroupBy.cumsum` (:issue:`43309`)
- :meth:`SparseArray.min` and :meth:`SparseArray.max` no longer require converting to a dense array (:issue:`43526`)
- Indexing into a :class:`SparseArray` with a
slice
withstep=1
no longer requires converting to a dense array (:issue:`43777`) - Performance improvement in :meth:`SparseArray.take` with
allow_fill=False
(:issue:`43654`) - Performance improvement in :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.Rolling.sum`, :meth:`.Expanding.sum`, :meth:`.Rolling.max`, :meth:`.Expanding.max`, :meth:`.Rolling.min` and :meth:`.Expanding.min` with
engine="numba"
(:issue:`43612`, :issue:`44176`, :issue:`45170`) - Improved performance of :meth:`pandas.read_csv` with
memory_map=True
when file encoding is UTF-8 (:issue:`43787`) - Performance improvement in :meth:`RangeIndex.sort_values` overriding :meth:`Index.sort_values` (:issue:`43666`)
- Performance improvement in :meth:`RangeIndex.insert` (:issue:`43988`)
- Performance improvement in :meth:`Index.insert` (:issue:`43953`)
- Performance improvement in :meth:`DatetimeIndex.tolist` (:issue:`43823`)
- Performance improvement in :meth:`DatetimeIndex.union` (:issue:`42353`)
- Performance improvement in :meth:`Series.nsmallest` (:issue:`43696`)
- Performance improvement in :meth:`DataFrame.insert` (:issue:`42998`)
- Performance improvement in :meth:`DataFrame.dropna` (:issue:`43683`)
- Performance improvement in :meth:`DataFrame.fillna` (:issue:`43316`)
- Performance improvement in :meth:`DataFrame.values` (:issue:`43160`)
- Performance improvement in :meth:`DataFrame.select_dtypes` (:issue:`42611`)
- Performance improvement in :class:`DataFrame` reductions (:issue:`43185`, :issue:`43243`, :issue:`43311`, :issue:`43609`)
- Performance improvement in :meth:`Series.unstack` and :meth:`DataFrame.unstack` (:issue:`43335`, :issue:`43352`, :issue:`42704`, :issue:`43025`)
- Performance improvement in :meth:`Series.to_frame` (:issue:`43558`)
- Performance improvement in :meth:`Series.mad` (:issue:`43010`)
- Performance improvement in :func:`merge` (:issue:`43332`)
- Performance improvement in :func:`to_csv` when index column is a datetime and is formatted (:issue:`39413`)
- Performance improvement in :func:`to_csv` when :class:`MultiIndex` contains a lot of unused levels (:issue:`37484`)
- Performance improvement in :func:`read_csv` when
index_col
was set with a numeric column (:issue:`44158`) - Performance improvement in :func:`concat` (:issue:`43354`)
- Performance improvement in :meth:`SparseArray.__getitem__` (:issue:`23122`)
- Performance improvement in constructing a :class:`DataFrame` from array-like objects like a
Pytorch
tensor (:issue:`44616`)
- Bug in setting dtype-incompatible values into a :class:`Categorical` (or
Series
orDataFrame
backed byCategorical
) raisingValueError
instead ofTypeError
(:issue:`41919`) - Bug in :meth:`Categorical.searchsorted` when passing a dtype-incompatible value raising
KeyError
instead ofTypeError
(:issue:`41919`) - Bug in :meth:`Categorical.astype` casting datetimes and :class:`Timestamp` to int for dtype
object
(:issue:`44930`) - Bug in :meth:`Series.where` with
CategoricalDtype
when passing a dtype-incompatible value raisingValueError
instead ofTypeError
(:issue:`41919`) - Bug in :meth:`Categorical.fillna` when passing a dtype-incompatible value raising
ValueError
instead ofTypeError
(:issue:`41919`) - Bug in :meth:`Categorical.fillna` with a tuple-like category raising
ValueError
instead ofTypeError
when filling with a non-category tuple (:issue:`41919`)
- Bug in :class:`DataFrame` constructor unnecessarily copying non-datetimelike 2D object arrays (:issue:`39272`)
- Bug in :func:`to_datetime` with
format
andpandas.NA
was raisingValueError
(:issue:`42957`) - :func:`to_datetime` would silently swap
MM/DD/YYYY
andDD/MM/YYYY
formats if the givendayfirst
option could not be respected - now, a warning is raised in the case of delimited date strings (e.g.31-12-2012
) (:issue:`12585`) - Bug in :meth:`date_range` and :meth:`bdate_range` do not return right bound when
start
=end
and set is closed on one side (:issue:`43394`) - Bug in inplace addition and subtraction of :class:`DatetimeIndex` or :class:`TimedeltaIndex` with :class:`DatetimeArray` or :class:`TimedeltaArray` (:issue:`43904`)
- Bug in calling
np.isnan
,np.isfinite
, ornp.isinf
on a timezone-aware :class:`DatetimeIndex` incorrectly raisingTypeError
(:issue:`43917`) - Bug in constructing a :class:`Series` from datetime-like strings with mixed timezones incorrectly partially-inferring datetime values (:issue:`40111`)
- Bug in addition of a :class:`Tick` object and a
np.timedelta64
object incorrectly raising instead of returning :class:`Timedelta` (:issue:`44474`) np.maximum.reduce
andnp.minimum.reduce
now correctly return :class:`Timestamp` and :class:`Timedelta` objects when operating on :class:`Series`, :class:`DataFrame`, or :class:`Index` withdatetime64[ns]
ortimedelta64[ns]
dtype (:issue:`43923`)- Bug in adding a
np.timedelta64
object to a :class:`BusinessDay` or :class:`CustomBusinessDay` object incorrectly raising (:issue:`44532`) - Bug in :meth:`Index.insert` for inserting
np.datetime64
,np.timedelta64
ortuple
into :class:`Index` withdtype='object'
with negative loc addingNone
and replacing existing value (:issue:`44509`) - Bug in :meth:`Timestamp.to_pydatetime` failing to retain the
fold
attribute (:issue:`45087`) - Bug in :meth:`Series.mode` with
DatetimeTZDtype
incorrectly returning timezone-naive andPeriodDtype
incorrectly raising (:issue:`41927`) - Fixed regression in :meth:`~Series.reindex` raising an error when using an incompatible fill value with a datetime-like dtype (or not raising a deprecation warning for using a
datetime.date
as fill value) (:issue:`42921`) - Bug in :class:`DateOffset` addition with :class:`Timestamp` where
offset.nanoseconds
would not be included in the result (:issue:`43968`, :issue:`36589`) - Bug in :meth:`Timestamp.fromtimestamp` not supporting the
tz
argument (:issue:`45083`) - Bug in :class:`DataFrame` construction from dict of :class:`Series` with mismatched index dtypes sometimes raising depending on the ordering of the passed dict (:issue:`44091`)
- Bug in :class:`Timestamp` hashing during some DST transitions caused a segmentation fault (:issue:`33931` and :issue:`40817`)
- Bug in division of all-
NaT
:class:`TimeDeltaIndex`, :class:`Series` or :class:`DataFrame` column with object-dtype array like of numbers failing to infer the result as timedelta64-dtype (:issue:`39750`) - Bug in floor division of
timedelta64[ns]
data with a scalar returning garbage values (:issue:`44466`) - Bug in :class:`Timedelta` now properly taking into account any nanoseconds contribution of any kwarg (:issue:`43764`, :issue:`45227`)
- Bug in :func:`to_datetime` with
infer_datetime_format=True
failing to parse zero UTC offset (Z
) correctly (:issue:`41047`) - Bug in :meth:`Series.dt.tz_convert` resetting index in a :class:`Series` with :class:`CategoricalIndex` (:issue:`43080`)
- Bug in
Timestamp
andDatetimeIndex
incorrectly raising aTypeError
when subtracting two timezone-aware objects with mismatched timezones (:issue:`31793`)
- Bug in floor-dividing a list or tuple of integers by a :class:`Series` incorrectly raising (:issue:`44674`)
- Bug in :meth:`DataFrame.rank` raising
ValueError
withobject
columns andmethod="first"
(:issue:`41931`) - Bug in :meth:`DataFrame.rank` treating missing values and extreme values as equal (for example
np.nan
andnp.inf
), causing incorrect results whenna_option="bottom"
orna_option="top
used (:issue:`41931`) - Bug in
numexpr
engine still being used when the optioncompute.use_numexpr
is set toFalse
(:issue:`32556`) - Bug in :class:`DataFrame` arithmetic ops with a subclass whose :meth:`_constructor` attribute is a callable other than the subclass itself (:issue:`43201`)
- Bug in arithmetic operations involving :class:`RangeIndex` where the result would have the incorrect
name
(:issue:`43962`) - Bug in arithmetic operations involving :class:`Series` where the result could have the incorrect
name
when the operands having matching NA or matching tuple names (:issue:`44459`) - Bug in division with
IntegerDtype
orBooleanDtype
array and NA scalar incorrectly raising (:issue:`44685`) - Bug in multiplying a :class:`Series` with
FloatingDtype
with a timedelta-like scalar incorrectly raising (:issue:`44772`)
- Bug in :class:`UInt64Index` constructor when passing a list containing both positive integers small enough to cast to int64 and integers too large to hold in int64 (:issue:`42201`)
- Bug in :class:`Series` constructor returning 0 for missing values with dtype
int64
andFalse
for dtypebool
(:issue:`43017`, :issue:`43018`) - Bug in constructing a :class:`DataFrame` from a :class:`PandasArray` containing :class:`Series` objects behaving differently than an equivalent
np.ndarray
(:issue:`43986`) - Bug in :class:`IntegerDtype` not allowing coercion from string dtype (:issue:`25472`)
- Bug in :func:`to_datetime` with
arg:xr.DataArray
andunit="ns"
specified raisesTypeError
(:issue:`44053`) - Bug in :meth:`DataFrame.convert_dtypes` not returning the correct type when a subclass does not overload :meth:`_constructor_sliced` (:issue:`43201`)
- Bug in :meth:`DataFrame.astype` not propagating
attrs
from the original :class:`DataFrame` (:issue:`44414`) - Bug in :meth:`DataFrame.convert_dtypes` result losing
columns.names
(:issue:`41435`) - Bug in constructing a
IntegerArray
from pyarrow data failing to validate dtypes (:issue:`44891`) - Bug in :meth:`Series.astype` not allowing converting from a
PeriodDtype
todatetime64
dtype, inconsistent with the :class:`PeriodIndex` behavior (:issue:`45038`)
- Bug in checking for
string[pyarrow]
dtype incorrectly raising anImportError
when pyarrow is not installed (:issue:`44276`)
- Bug in :meth:`Series.where` with
IntervalDtype
incorrectly raising when thewhere
call should not replace anything (:issue:`44181`)
- Bug in :meth:`Series.rename` with :class:`MultiIndex` and
level
is provided (:issue:`43659`) - Bug in :meth:`DataFrame.truncate` and :meth:`Series.truncate` when the object's :class:`Index` has a length greater than one but only one unique value (:issue:`42365`)
- Bug in :meth:`Series.loc` and :meth:`DataFrame.loc` with a :class:`MultiIndex` when indexing with a tuple in which one of the levels is also a tuple (:issue:`27591`)
- Bug in :meth:`Series.loc` with a :class:`MultiIndex` whose first level contains only
np.nan
values (:issue:`42055`) - Bug in indexing on a :class:`Series` or :class:`DataFrame` with a :class:`DatetimeIndex` when passing a string, the return type depended on whether the index was monotonic (:issue:`24892`)
- Bug in indexing on a :class:`MultiIndex` failing to drop scalar levels when the indexer is a tuple containing a datetime-like string (:issue:`42476`)
- Bug in :meth:`DataFrame.sort_values` and :meth:`Series.sort_values` when passing an ascending value, failed to raise or incorrectly raising
ValueError
(:issue:`41634`) - Bug in updating values of :class:`pandas.Series` using boolean index, created by using :meth:`pandas.DataFrame.pop` (:issue:`42530`)
- Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple
np.nan
(:issue:`35392`) - Bug in :meth:`DataFrame.query` did not handle the degree sign in a backticked column name, such as `Temp(°C)`, used in an expression to query a :class:`DataFrame` (:issue:`42826`)
- Bug in :meth:`DataFrame.drop` where the error message did not show missing labels with commas when raising
KeyError
(:issue:`42881`) - Bug in :meth:`DataFrame.query` where method calls in query strings led to errors when the
numexpr
package was installed (:issue:`22435`) - Bug in :meth:`DataFrame.nlargest` and :meth:`Series.nlargest` where sorted result did not count indexes containing
np.nan
(:issue:`28984`) - Bug in indexing on a non-unique object-dtype :class:`Index` with an NA scalar (e.g.
np.nan
) (:issue:`43711`) - Bug in :meth:`DataFrame.__setitem__` incorrectly writing into an existing column's array rather than setting a new array when the new dtype and the old dtype match (:issue:`43406`)
- Bug in setting floating-dtype values into a :class:`Series` with integer dtype failing to set inplace when those values can be losslessly converted to integers (:issue:`44316`)
- Bug in :meth:`Series.__setitem__` with object dtype when setting an array with matching size and dtype='datetime64[ns]' or dtype='timedelta64[ns]' incorrectly converting the datetime/timedeltas to integers (:issue:`43868`)
- Bug in :meth:`DataFrame.sort_index` where
ignore_index=True
was not being respected when the index was already sorted (:issue:`43591`) - Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple
np.datetime64("NaT")
andnp.timedelta64("NaT")
(:issue:`43869`) - Bug in setting a scalar :class:`Interval` value into a :class:`Series` with
IntervalDtype
when the scalar's sides are floats and the values' sides are integers (:issue:`44201`) - Bug when setting string-backed :class:`Categorical` values that can be parsed to datetimes into a :class:`DatetimeArray` or :class:`Series` or :class:`DataFrame` column backed by :class:`DatetimeArray` failing to parse these strings (:issue:`44236`)
- Bug in :meth:`Series.__setitem__` with an integer dtype other than
int64
setting with arange
object unnecessarily upcasting toint64
(:issue:`44261`) - Bug in :meth:`Series.__setitem__` with a boolean mask indexer setting a listlike value of length 1 incorrectly broadcasting that value (:issue:`44265`)
- Bug in :meth:`Series.reset_index` not ignoring
name
argument whendrop
andinplace
are set toTrue
(:issue:`44575`) - Bug in :meth:`DataFrame.loc.__setitem__` and :meth:`DataFrame.iloc.__setitem__` with mixed dtypes sometimes failing to operate in-place (:issue:`44345`)
- Bug in :meth:`DataFrame.loc.__getitem__` incorrectly raising
KeyError
when selecting a single column with a boolean key (:issue:`44322`). - Bug in setting :meth:`DataFrame.iloc` with a single
ExtensionDtype
column and setting 2D values e.g.df.iloc[:] = df.values
incorrectly raising (:issue:`44514`) - Bug in setting values with :meth:`DataFrame.iloc` with a single
ExtensionDtype
column and a tuple of arrays as the indexer (:issue:`44703`) - Bug in indexing on columns with
loc
oriloc
using a slice with a negative step withExtensionDtype
columns incorrectly raising (:issue:`44551`) - Bug in :meth:`DataFrame.loc.__setitem__` changing dtype when indexer was completely
False
(:issue:`37550`) - Bug in :meth:`IntervalIndex.get_indexer_non_unique` returning boolean mask instead of array of integers for a non unique and non monotonic index (:issue:`44084`)
- Bug in :meth:`IntervalIndex.get_indexer_non_unique` not handling targets of
dtype
'object' with NaNs correctly (:issue:`44482`) - Fixed regression where a single column
np.matrix
was no longer coerced to a 1dnp.ndarray
when added to a :class:`DataFrame` (:issue:`42376`) - Bug in :meth:`Series.__getitem__` with a :class:`CategoricalIndex` of integers treating lists of integers as positional indexers, inconsistent with the behavior with a single scalar integer (:issue:`15470`, :issue:`14865`)
- Bug in :meth:`Series.__setitem__` when setting floats or integers into integer-dtype :class:`Series` failing to upcast when necessary to retain precision (:issue:`45121`)
- Bug in :meth:`DataFrame.iloc.__setitem__` ignores axis argument (:issue:`45032`)
- Bug in :meth:`DataFrame.fillna` with
limit
and nomethod
ignoresaxis='columns'
oraxis = 1
(:issue:`40989`, :issue:`17399`) - Bug in :meth:`DataFrame.fillna` not replacing missing values when using a dict-like
value
and duplicate column names (:issue:`43476`) - Bug in constructing a :class:`DataFrame` with a dictionary
np.datetime64
as a value anddtype='timedelta64[ns]'
, or vice-versa, incorrectly casting instead of raising (:issue:`44428`) - Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with
inplace=True
not writing to the underlying array(s) in-place (:issue:`44749`) - Bug in :meth:`Index.fillna` incorrectly returning an unfilled :class:`Index` when NA values are present and
downcast
argument is specified. This now raisesNotImplementedError
instead; do not passdowncast
argument (:issue:`44873`) - Bug in :meth:`DataFrame.dropna` changing :class:`Index` even if no entries were dropped (:issue:`41965`)
- Bug in :meth:`Series.fillna` with an object-dtype incorrectly ignoring
downcast="infer"
(:issue:`44241`)
- Bug in :meth:`MultiIndex.get_loc` where the first level is a :class:`DatetimeIndex` and a string key is passed (:issue:`42465`)
- Bug in :meth:`MultiIndex.reindex` when passing a
level
that corresponds to anExtensionDtype
level (:issue:`42043`) - Bug in :meth:`MultiIndex.get_loc` raising
TypeError
instead ofKeyError
on nested tuple (:issue:`42440`) - Bug in :meth:`MultiIndex.union` setting wrong
sortorder
causing errors in subsequent indexing operations with slices (:issue:`44752`) - Bug in :meth:`MultiIndex.putmask` where the other value was also a :class:`MultiIndex` (:issue:`43212`)
- Bug in :meth:`MultiIndex.dtypes` duplicate level names returned only one dtype per name (:issue:`45174`)
- Bug in :func:`read_excel` attempting to read chart sheets from .xlsx files (:issue:`41448`)
- Bug in :func:`json_normalize` where
errors=ignore
could fail to ignore missing values ofmeta
whenrecord_path
has a length greater than one (:issue:`41876`) - Bug in :func:`read_csv` with multi-header input and arguments referencing column names as tuples (:issue:`42446`)
- Bug in :func:`read_fwf`, where difference in lengths of
colspecs
andnames
was not raisingValueError
(:issue:`40830`) - Bug in :func:`Series.to_json` and :func:`DataFrame.to_json` where some attributes were skipped when serializing plain Python objects to JSON (:issue:`42768`, :issue:`33043`)
- Column headers are dropped when constructing a :class:`DataFrame` from a sqlalchemy's
Row
object (:issue:`40682`) - Bug in unpickling an :class:`Index` with object dtype incorrectly inferring numeric dtypes (:issue:`43188`)
- Bug in :func:`read_csv` where reading multi-header input with unequal lengths incorrectly raised
IndexError
(:issue:`43102`) - Bug in :func:`read_csv` raising
ParserError
when reading file in chunks and some chunk blocks have fewer columns than header forengine="c"
(:issue:`21211`) - Bug in :func:`read_csv`, changed exception class when expecting a file path name or file-like object from
OSError
toTypeError
(:issue:`43366`) - Bug in :func:`read_csv` and :func:`read_fwf` ignoring all
skiprows
except first whennrows
is specified forengine='python'
(:issue:`44021`, :issue:`10261`) - Bug in :func:`read_csv` keeping the original column in object format when
keep_date_col=True
is set (:issue:`13378`) - Bug in :func:`read_json` not handling non-numpy dtypes correctly (especially
category
) (:issue:`21892`, :issue:`33205`) - Bug in :func:`json_normalize` where multi-character
sep
parameter is incorrectly prefixed to every key (:issue:`43831`) - Bug in :func:`json_normalize` where reading data with missing multi-level metadata would not respect
errors="ignore"
(:issue:`44312`) - Bug in :func:`read_csv` used second row to guess implicit index if
header
was set toNone
forengine="python"
(:issue:`22144`) - Bug in :func:`read_csv` not recognizing bad lines when
names
were given forengine="c"
(:issue:`22144`) - Bug in :func:`read_csv` with
float_precision="round_trip"
which did not skip initial/trailing whitespace (:issue:`43713`) - Bug when Python is built without the lzma module: a warning was raised at the pandas import time, even if the lzma capability isn't used (:issue:`43495`)
- Bug in :func:`read_csv` not applying dtype for
index_col
(:issue:`9435`) - Bug in dumping/loading a :class:`DataFrame` with
yaml.dump(frame)
(:issue:`42748`) - Bug in :func:`read_csv` raising
ValueError
whennames
was longer thanheader
but equal to data rows forengine="python"
(:issue:`38453`) - Bug in :class:`ExcelWriter`, where
engine_kwargs
were not passed through to all engines (:issue:`43442`) - Bug in :func:`read_csv` raising
ValueError
whenparse_dates
was used with :class:`MultiIndex` columns (:issue:`8991`) - Bug in :func:`read_csv` not raising an
ValueError
when\n
was specified asdelimiter
orsep
which conflicts withlineterminator
(:issue:`43528`) - Bug in :func:`to_csv` converting datetimes in categorical :class:`Series` to integers (:issue:`40754`)
- Bug in :func:`read_csv` converting columns to numeric after date parsing failed (:issue:`11019`)
- Bug in :func:`read_csv` not replacing
NaN
values withnp.nan
before attempting date conversion (:issue:`26203`) - Bug in :func:`read_csv` raising
AttributeError
when attempting to read a .csv file and infer index column dtype from an nullable integer type (:issue:`44079`) - Bug in :func:`to_csv` always coercing datetime columns with different formats to the same format (:issue:`21734`)
- :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` with
compression
set to'zip'
no longer create a zip file containing a file ending with ".zip". Instead, they try to infer the inner file name more smartly (:issue:`39465`) - Bug in :func:`read_csv` where reading a mixed column of booleans and missing values to a float type results in the missing values becoming 1.0 rather than NaN (:issue:`42808`, :issue:`34120`)
- Bug in :func:`to_xml` raising error for
pd.NA
with extension array dtype (:issue:`43903`) - Bug in :func:`read_csv` when passing simultaneously a parser in
date_parser
andparse_dates=False
, the parsing was still called (:issue:`44366`) - Bug in :func:`read_csv` not setting name of :class:`MultiIndex` columns correctly when
index_col
is not the first column (:issue:`38549`) - Bug in :func:`read_csv` silently ignoring errors when failing to create a memory-mapped file (:issue:`44766`)
- Bug in :func:`read_csv` when passing a
tempfile.SpooledTemporaryFile
opened in binary mode (:issue:`44748`) - Bug in :func:`read_json` raising
ValueError
when attempting to parse json strings containing "://" (:issue:`36271`) - Bug in :func:`read_csv` when
engine="c"
andencoding_errors=None
which caused a segfault (:issue:`45180`) - Bug in :func:`read_csv` an invalid value of
usecols
leading to an unclosed file handle (:issue:`45384`) - Bug in :meth:`DataFrame.to_json` fix memory leak (:issue:`43877`)
- Bug in adding a :class:`Period` object to a
np.timedelta64
object incorrectly raisingTypeError
(:issue:`44182`) - Bug in :meth:`PeriodIndex.to_timestamp` when the index has
freq="B"
inferringfreq="D"
for its result instead offreq="B"
(:issue:`44105`) - Bug in :class:`Period` constructor incorrectly allowing
np.timedelta64("NaT")
(:issue:`44507`) - Bug in :meth:`PeriodIndex.to_timestamp` giving incorrect values for indexes with non-contiguous data (:issue:`44100`)
- Bug in :meth:`Series.where` with
PeriodDtype
incorrectly raising when thewhere
call should not replace anything (:issue:`45135`)
- When given non-numeric data, :meth:`DataFrame.boxplot` now raises a
ValueError
rather than a crypticKeyError
orZeroDivisionError
, in line with other plotting functions like :meth:`DataFrame.hist` (:issue:`43480`)
- Bug in :meth:`SeriesGroupBy.apply` where passing an unrecognized string argument failed to raise
TypeError
when the underlyingSeries
is empty (:issue:`42021`) - Bug in :meth:`Series.rolling.apply`, :meth:`DataFrame.rolling.apply`, :meth:`Series.expanding.apply` and :meth:`DataFrame.expanding.apply` with
engine="numba"
where*args
were being cached with the user passed function (:issue:`42287`) - Bug in :meth:`.DataFrameGroupBy.max`, :meth:`.SeriesGroupBy.max`, :meth:`.DataFrameGroupBy.min`, and :meth:`.SeriesGroupBy.min` with nullable integer dtypes losing precision (:issue:`41743`)
- Bug in :meth:`DataFrame.groupby.rolling.var` would calculate the rolling variance only on the first group (:issue:`42442`)
- Bug in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` that would return the grouping columns if
fill_value
was notNone
(:issue:`41556`) - Bug in :meth:`SeriesGroupBy.nlargest` and :meth:`SeriesGroupBy.nsmallest` would have an inconsistent index when the input :class:`Series` was sorted and
n
was greater than or equal to all group sizes (:issue:`15272`, :issue:`16345`, :issue:`29129`) - Bug in :meth:`pandas.DataFrame.ewm`, where non-float64 dtypes were silently failing (:issue:`42452`)
- Bug in :meth:`pandas.DataFrame.rolling` operation along rows (
axis=1
) incorrectly omits columns containingfloat16
andfloat32
(:issue:`41779`) - Bug in :meth:`Resampler.aggregate` did not allow the use of Named Aggregation (:issue:`32803`)
- Bug in :meth:`Series.rolling` when the :class:`Series`
dtype
wasInt64
(:issue:`43016`) - Bug in :meth:`DataFrame.rolling.corr` when the :class:`DataFrame` columns was a :class:`MultiIndex` (:issue:`21157`)
- Bug in :meth:`DataFrame.groupby.rolling` when specifying
on
and calling__getitem__
would subsequently return incorrect results (:issue:`43355`) - Bug in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` with time-based :class:`Grouper` objects incorrectly raising
ValueError
in corner cases where the grouping vector contains aNaT
(:issue:`43500`, :issue:`43515`) - Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` failing with
complex
dtype (:issue:`43701`) - Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not calculating window bounds correctly for the first row when
center=True
and index is decreasing (:issue:`43927`) - Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` for centered datetimelike windows with uneven nanosecond (:issue:`43997`)
- Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` raising
KeyError
when column was selected at least twice (:issue:`44924`) - Bug in :meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` failing on
axis=1
(:issue:`43926`) - Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not respecting right bound on centered datetime-like windows, if the index contain duplicates (:issue:`3944`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` when using a :class:`pandas.api.indexers.BaseIndexer` subclass that returned unequal start and end arrays would segfault instead of raising a
ValueError
(:issue:`44470`) - Bug in :meth:`Groupby.nunique` not respecting
observed=True
forcategorical
grouping columns (:issue:`45128`) - Bug in :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` not dropping groups with
NaN
whendropna=True
(:issue:`45089`) - Bug in :meth:`GroupBy.__iter__` after selecting a subset of columns in a :class:`GroupBy` object, which returned all columns instead of the chosen subset (:issue:`44821`)
- Bug in :meth:`Groupby.rolling` when non-monotonic data passed, fails to correctly raise
ValueError
(:issue:`43909`) - Bug where grouping by a :class:`Series` that has a
categorical
data type and length unequal to the axis of grouping raisedValueError
(:issue:`44179`)
- Improved error message when creating a :class:`DataFrame` column from a multi-dimensional :class:`numpy.ndarray` (:issue:`42463`)
- Bug in :func:`concat` creating :class:`MultiIndex` with duplicate level entries when concatenating a :class:`DataFrame` with duplicates in :class:`Index` and multiple keys (:issue:`42651`)
- Bug in :meth:`pandas.cut` on :class:`Series` with duplicate indices and non-exact :meth:`pandas.CategoricalIndex` (:issue:`42185`, :issue:`42425`)
- Bug in :meth:`DataFrame.append` failing to retain dtypes when appended columns do not match (:issue:`43392`)
- Bug in :func:`concat` of
bool
andboolean
dtypes resulting inobject
dtype instead ofboolean
dtype (:issue:`42800`) - Bug in :func:`crosstab` when inputs are categorical :class:`Series`, there are categories that are not present in one or both of the :class:`Series`, and
margins=True
. Previously the margin value for missing categories wasNaN
. It is now correctly reported as 0 (:issue:`43505`) - Bug in :func:`concat` would fail when the
objs
argument all had the same index and thekeys
argument contained duplicates (:issue:`43595`) - Bug in :func:`concat` which ignored the
sort
parameter (:issue:`43375`) - Bug in :func:`merge` with :class:`MultiIndex` as column index for the
on
argument returning an error when assigning a column internally (:issue:`43734`) - Bug in :func:`crosstab` would fail when inputs are lists or tuples (:issue:`44076`)
- Bug in :meth:`DataFrame.append` failing to retain
index.name
when appending a list of :class:`Series` objects (:issue:`44109`) - Fixed metadata propagation in :meth:`Dataframe.apply` method, consequently fixing the same issue for :meth:`Dataframe.transform`, :meth:`Dataframe.nunique` and :meth:`Dataframe.mode` (:issue:`28283`)
- Bug in :func:`concat` casting levels of :class:`MultiIndex` to float if all levels only consist of missing values (:issue:`44900`)
- Bug in :meth:`DataFrame.stack` with
ExtensionDtype
columns incorrectly raising (:issue:`43561`) - Bug in :func:`merge` raising
KeyError
when joining over differently named indexes with on keywords (:issue:`45094`) - Bug in :meth:`Series.unstack` with object doing unwanted type inference on resulting columns (:issue:`44595`)
- Bug in :meth:`MultiIndex.join()` with overlapping
IntervalIndex
levels (:issue:`44096`) - Bug in :meth:`DataFrame.replace` and :meth:`Series.replace` results is different
dtype
based onregex
parameter (:issue:`44864`) - Bug in :meth:`DataFrame.pivot` with
index=None
when the :class:`DataFrame` index was a :class:`MultiIndex` (:issue:`23955`)
- Bug in :meth:`DataFrame.sparse.to_coo` raising
AttributeError
when column names are not unique (:issue:`29564`) - Bug in :meth:`SparseArray.max` and :meth:`SparseArray.min` raising
ValueError
for arrays with 0 non-null elements (:issue:`43527`) - Bug in :meth:`DataFrame.sparse.to_coo` silently converting non-zero fill values to zero (:issue:`24817`)
- Bug in :class:`SparseArray` comparison methods with an array-like operand of mismatched length raising
AssertionError
or unclearValueError
depending on the input (:issue:`43863`) - Bug in :class:`SparseArray` arithmetic methods
floordiv
andmod
behaviors when dividing by zero not matching the non-sparse :class:`Series` behavior (:issue:`38172`) - Bug in :class:`SparseArray` unary methods as well as :meth:`SparseArray.isna` doesn't recalculate indexes (:issue:`44955`)
- Bug in :func:`array` failing to preserve :class:`PandasArray` (:issue:`43887`)
- NumPy ufuncs
np.abs
,np.positive
,np.negative
now correctly preserve dtype when called on ExtensionArrays that implement__abs__, __pos__, __neg__
, respectively. In particular this is fixed for :class:`TimedeltaArray` (:issue:`43899`, :issue:`23316`) - NumPy ufuncs
np.minimum.reduce
np.maximum.reduce
,np.add.reduce
, andnp.prod.reduce
now work correctly instead of raisingNotImplementedError
on :class:`Series` withIntegerDtype
orFloatDtype
(:issue:`43923`, :issue:`44793`) - NumPy ufuncs with
out
keyword are now supported by arrays withIntegerDtype
andFloatingDtype
(:issue:`45122`) - Avoid raising
PerformanceWarning
about fragmented :class:`DataFrame` when using many columns with an extension dtype (:issue:`44098`) - Bug in :class:`IntegerArray` and :class:`FloatingArray` construction incorrectly coercing mismatched NA values (e.g.
np.timedelta64("NaT")
) to numeric NA (:issue:`44514`) - Bug in :meth:`BooleanArray.__eq__` and :meth:`BooleanArray.__ne__` raising
TypeError
on comparison with an incompatible type (like a string). This caused :meth:`DataFrame.replace` to sometimes raise aTypeError
if a nullable boolean column was included (:issue:`44499`) - Bug in :func:`array` incorrectly raising when passed a
ndarray
withfloat16
dtype (:issue:`44715`) - Bug in calling
np.sqrt
on :class:`BooleanArray` returning a malformed :class:`FloatingArray` (:issue:`44715`) - Bug in :meth:`Series.where` with
ExtensionDtype
whenother
is a NA scalar incompatible with the :class:`Series` dtype (e.g.NaT
with a numeric dtype) incorrectly casting to a compatible NA value (:issue:`44697`) - Bug in :meth:`Series.replace` where explicitly passing
value=None
is treated as if novalue
was passed, andNone
not being in the result (:issue:`36984`, :issue:`19998`) - Bug in :meth:`Series.replace` with unwanted downcasting being done in no-op replacements (:issue:`44498`)
- Bug in :meth:`Series.replace` with
FloatDtype
,string[python]
, orstring[pyarrow]
dtype not being preserved when possible (:issue:`33484`, :issue:`40732`, :issue:`31644`, :issue:`41215`, :issue:`25438`)
- Bug in :class:`.Styler` where the
uuid
at initialization maintained a floating underscore (:issue:`43037`) - Bug in :meth:`.Styler.to_html` where the
Styler
object was updated if theto_html
method was called with some args (:issue:`43034`) - Bug in :meth:`.Styler.copy` where
uuid
was not previously copied (:issue:`40675`) - Bug in :meth:`Styler.apply` where functions which returned :class:`Series` objects were not correctly handled in terms of aligning their index labels (:issue:`13657`, :issue:`42014`)
- Bug when rendering an empty :class:`DataFrame` with a named :class:`Index` (:issue:`43305`)
- Bug when rendering a single level :class:`MultiIndex` (:issue:`43383`)
- Bug when combining non-sparse rendering and :meth:`.Styler.hide_columns` or :meth:`.Styler.hide_index` (:issue:`43464`)
- Bug setting a table style when using multiple selectors in :class:`.Styler` (:issue:`44011`)
- Bugs where row trimming and column trimming failed to reflect hidden rows (:issue:`43703`, :issue:`44247`)
- Bug in :meth:`DataFrame.astype` with non-unique columns and a :class:`Series`
dtype
argument (:issue:`44417`) - Bug in :meth:`CustomBusinessMonthBegin.__add__` (:meth:`CustomBusinessMonthEnd.__add__`) not applying the extra
offset
parameter when beginning (end) of the target month is already a business day (:issue:`41356`) - Bug in :meth:`RangeIndex.union` with another
RangeIndex
with matching (even)step
and starts differing by strictly less thanstep / 2
(:issue:`44019`) - Bug in :meth:`RangeIndex.difference` with
sort=None
andstep<0
failing to sort (:issue:`44085`) - Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` with
value=None
and ExtensionDtypes (:issue:`44270`, :issue:`37899`) - Bug in :meth:`FloatingArray.equals` failing to consider two arrays equal if they contain
np.nan
values (:issue:`44382`) - Bug in :meth:`DataFrame.shift` with
axis=1
andExtensionDtype
columns incorrectly raising when an incompatiblefill_value
is passed (:issue:`44564`) - Bug in :meth:`DataFrame.shift` with
axis=1
andperiods
larger thanlen(frame.columns)
producing an invalid :class:`DataFrame` (:issue:`44978`) - Bug in :meth:`DataFrame.diff` when passing a NumPy integer object instead of an
int
object (:issue:`44572`) - Bug in :meth:`Series.replace` raising
ValueError
when usingregex=True
with a :class:`Series` containingnp.nan
values (:issue:`43344`) - Bug in :meth:`DataFrame.to_records` where an incorrect
n
was used when missing names were replaced bylevel_n
(:issue:`44818`) - Bug in :meth:`DataFrame.eval` where
resolvers
argument was overriding the default resolvers (:issue:`34966`) - :meth:`Series.__repr__` and :meth:`DataFrame.__repr__` no longer replace all null-values in indexes with "NaN" but use their real string-representations. "NaN" is used only for
float("nan")
(:issue:`45263`)
.. contributors:: v1.3.5..v1.4.0