forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_datetime.py
332 lines (259 loc) · 11.8 KB
/
test_datetime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from datetime import datetime, timedelta
from dateutil import tz
import numpy as np
import pandas as pd
from pandas import DataFrame, Index, Series, Timestamp, date_range
from pandas.util import testing as tm
class TestDatetimeIndex:
def test_setitem_with_datetime_tz(self):
# 16889
# support .loc with alignment and tz-aware DatetimeIndex
mask = np.array([True, False, True, False])
idx = date_range('20010101', periods=4, tz='UTC')
df = DataFrame({'a': np.arange(4)}, index=idx).astype('float64')
result = df.copy()
result.loc[mask, :] = df.loc[mask, :]
tm.assert_frame_equal(result, df)
result = df.copy()
result.loc[mask] = df.loc[mask]
tm.assert_frame_equal(result, df)
idx = date_range('20010101', periods=4)
df = DataFrame({'a': np.arange(4)}, index=idx).astype('float64')
result = df.copy()
result.loc[mask, :] = df.loc[mask, :]
tm.assert_frame_equal(result, df)
result = df.copy()
result.loc[mask] = df.loc[mask]
tm.assert_frame_equal(result, df)
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range('20130101', periods=3, tz='US/Eastern'),
name='foo')
dr = date_range('20130110', periods=3)
df = DataFrame({'A': idx, 'B': dr})
df['C'] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
# indexing
result = df.iloc[1]
expected = Series([Timestamp('2013-01-02 00:00:00-0500',
tz='US/Eastern'), np.nan, np.nan],
index=list('ABC'), dtype='object', name=1)
tm.assert_series_equal(result, expected)
result = df.loc[1]
expected = Series([Timestamp('2013-01-02 00:00:00-0500',
tz='US/Eastern'), np.nan, np.nan],
index=list('ABC'), dtype='object', name=1)
tm.assert_series_equal(result, expected)
# indexing - fast_xs
df = DataFrame({'a': date_range('2014-01-01', periods=10, tz='UTC')})
result = df.iloc[5]
expected = Series([Timestamp('2014-01-06 00:00:00+0000', tz='UTC')],
index=['a'], name=5)
tm.assert_series_equal(result, expected)
result = df.loc[5]
tm.assert_series_equal(result, expected)
# indexing - boolean
result = df[df.a > df.a[3]]
expected = df.iloc[4:]
tm.assert_frame_equal(result, expected)
# indexing - setting an element
df = DataFrame(data=pd.to_datetime(
['2015-03-30 20:12:32', '2015-03-12 00:11:11']), columns=['time'])
df['new_col'] = ['new', 'old']
df.time = df.set_index('time').index.tz_localize('UTC')
v = df[df.new_col == 'new'].set_index('time').index.tz_convert(
'US/Pacific')
# trying to set a single element on a part of a different timezone
# this converts to object
df2 = df.copy()
df2.loc[df2.new_col == 'new', 'time'] = v
expected = Series([v[0], df.loc[1, 'time']], name='time')
tm.assert_series_equal(df2.time, expected)
v = df.loc[df.new_col == 'new', 'time'] + pd.Timedelta('1s')
df.loc[df.new_col == 'new', 'time'] = v
tm.assert_series_equal(df.loc[df.new_col == 'new', 'time'], v)
def test_consistency_with_tz_aware_scalar(self):
# xef gh-12938
# various ways of indexing the same tz-aware scalar
df = Series([Timestamp('2016-03-30 14:35:25',
tz='Europe/Brussels')]).to_frame()
df = pd.concat([df, df]).reset_index(drop=True)
expected = Timestamp('2016-03-30 14:35:25+0200',
tz='Europe/Brussels')
result = df[0][0]
assert result == expected
result = df.iloc[0, 0]
assert result == expected
result = df.loc[0, 0]
assert result == expected
result = df.iat[0, 0]
assert result == expected
result = df.at[0, 0]
assert result == expected
result = df[0].loc[0]
assert result == expected
result = df[0].at[0]
assert result == expected
def test_indexing_with_datetimeindex_tz(self):
# GH 12050
# indexing on a series with a datetimeindex with tz
index = date_range('2015-01-01', periods=2, tz='utc')
ser = Series(range(2), index=index, dtype='int64')
# list-like indexing
for sel in (index, list(index)):
# getitem
tm.assert_series_equal(ser[sel], ser)
# setitem
result = ser.copy()
result[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
tm.assert_series_equal(ser.loc[sel], ser)
# .loc setitem
result = ser.copy()
result.loc[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# single element indexing
# getitem
assert ser[index[1]] == 1
# setitem
result = ser.copy()
result[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
assert ser.loc[index[1]] == 1
# .loc setitem
result = ser.copy()
result.loc[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
def test_partial_setting_with_datetimelike_dtype(self):
# GH9478
# a datetimeindex alignment issue with partial setting
df = DataFrame(np.arange(6.).reshape(3, 2), columns=list('AB'),
index=date_range('1/1/2000', periods=3, freq='1H'))
expected = df.copy()
expected['C'] = [expected.index[0]] + [pd.NaT, pd.NaT]
mask = df.A < 1
df.loc[mask, 'C'] = df.loc[mask].index
tm.assert_frame_equal(df, expected)
def test_loc_setitem_datetime(self):
# GH 9516
dt1 = Timestamp('20130101 09:00:00')
dt2 = Timestamp('20130101 10:00:00')
for conv in [lambda x: x, lambda x: x.to_datetime64(),
lambda x: x.to_pydatetime(), lambda x: np.datetime64(x)]:
df = DataFrame()
df.loc[conv(dt1), 'one'] = 100
df.loc[conv(dt2), 'one'] = 200
expected = DataFrame({'one': [100.0, 200.0]}, index=[dt1, dt2])
tm.assert_frame_equal(df, expected)
def test_series_partial_set_datetime(self):
# GH 11497
idx = date_range('2011-01-01', '2011-01-02', freq='D', name='idx')
ser = Series([0.1, 0.2], index=idx, name='s')
result = ser.loc[[Timestamp('2011-01-01'), Timestamp('2011-01-02')]]
exp = Series([0.1, 0.2], index=idx, name='s')
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [Timestamp('2011-01-02'), Timestamp('2011-01-02'),
Timestamp('2011-01-01')]
exp = Series([0.2, 0.2, 0.1], index=pd.DatetimeIndex(keys, name='idx'),
name='s')
tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)
keys = [Timestamp('2011-01-03'), Timestamp('2011-01-02'),
Timestamp('2011-01-03')]
exp = Series([np.nan, 0.2, np.nan],
index=pd.DatetimeIndex(keys, name='idx'), name='s')
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)
def test_series_partial_set_period(self):
# GH 11497
idx = pd.period_range('2011-01-01', '2011-01-02', freq='D', name='idx')
ser = Series([0.1, 0.2], index=idx, name='s')
result = ser.loc[[pd.Period('2011-01-01', freq='D'),
pd.Period('2011-01-02', freq='D')]]
exp = Series([0.1, 0.2], index=idx, name='s')
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [pd.Period('2011-01-02', freq='D'),
pd.Period('2011-01-02', freq='D'),
pd.Period('2011-01-01', freq='D')]
exp = Series([0.2, 0.2, 0.1], index=pd.PeriodIndex(keys, name='idx'),
name='s')
tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)
keys = [pd.Period('2011-01-03', freq='D'),
pd.Period('2011-01-02', freq='D'),
pd.Period('2011-01-03', freq='D')]
exp = Series([np.nan, 0.2, np.nan],
index=pd.PeriodIndex(keys, name='idx'), name='s')
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = ser.loc[keys]
tm.assert_series_equal(result, exp)
def test_nanosecond_getitem_setitem_with_tz(self):
# GH 11679
data = ['2016-06-28 08:30:00.123456789']
index = pd.DatetimeIndex(data, dtype='datetime64[ns, America/Chicago]')
df = DataFrame({'a': [10]}, index=index)
result = df.loc[df.index[0]]
expected = Series(10, index=['a'], name=df.index[0])
tm.assert_series_equal(result, expected)
result = df.copy()
result.loc[df.index[0], 'a'] = -1
expected = DataFrame(-1, index=index, columns=['a'])
tm.assert_frame_equal(result, expected)
def test_loc_getitem_across_dst(self):
# GH 21846
idx = pd.date_range('2017-10-29 01:30:00',
tz='Europe/Berlin', periods=5, freq='30 min')
series2 = pd.Series([0, 1, 2, 3, 4],
index=idx)
t_1 = pd.Timestamp('2017-10-29 02:30:00+02:00', tz='Europe/Berlin',
freq='30min')
t_2 = pd.Timestamp('2017-10-29 02:00:00+01:00', tz='Europe/Berlin',
freq='30min')
result = series2.loc[t_1:t_2]
expected = pd.Series([2, 3], index=idx[2:4])
tm.assert_series_equal(result, expected)
result = series2[t_1]
expected = 2
assert result == expected
def test_loc_incremental_setitem_with_dst(self):
# GH 20724
base = datetime(2015, 11, 1, tzinfo=tz.gettz("US/Pacific"))
idxs = [base + timedelta(seconds=i * 900) for i in range(16)]
result = pd.Series([0], index=[idxs[0]])
for ts in idxs:
result.loc[ts] = 1
expected = pd.Series(1, index=idxs)
tm.assert_series_equal(result, expected)
def test_loc_setitem_with_existing_dst(self):
# GH 18308
start = pd.Timestamp('2017-10-29 00:00:00+0200', tz='Europe/Madrid')
end = pd.Timestamp('2017-10-29 03:00:00+0100', tz='Europe/Madrid')
ts = pd.Timestamp('2016-10-10 03:00:00', tz='Europe/Madrid')
idx = pd.date_range(start, end, closed='left', freq="H")
result = pd.DataFrame(index=idx, columns=['value'])
result.loc[ts, 'value'] = 12
expected = pd.DataFrame([np.nan] * len(idx) + [12],
index=idx.append(pd.DatetimeIndex([ts])),
columns=['value'],
dtype=object)
tm.assert_frame_equal(result, expected)
def test_loc_str_slicing(self):
ix = pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
ser = ix.to_series()
result = ser.loc[:"2017-12"]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)
def test_loc_label_slicing(self):
ix = pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
ser = ix.to_series()
result = ser.loc[:ix[-2]]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)