forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_numpy.py
437 lines (331 loc) · 14.5 KB
/
test_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
Note: we do not bother with base.BaseIndexTests because NumpyExtensionArray
will never be held in an Index.
"""
import numpy as np
import pytest
from pandas.core.dtypes.cast import can_hold_element
from pandas.core.dtypes.dtypes import NumpyEADtype
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_object_dtype
from pandas.core.arrays.numpy_ import NumpyExtensionArray
from pandas.core.internals import blocks
from pandas.tests.extension import base
def _can_hold_element_patched(obj, element) -> bool:
if isinstance(element, NumpyExtensionArray):
element = element.to_numpy()
return can_hold_element(obj, element)
orig_assert_attr_equal = tm.assert_attr_equal
def _assert_attr_equal(attr: str, left, right, obj: str = "Attributes"):
"""
patch tm.assert_attr_equal so NumpyEADtype("object") is closed enough to
np.dtype("object")
"""
if attr == "dtype":
lattr = getattr(left, "dtype", None)
rattr = getattr(right, "dtype", None)
if isinstance(lattr, NumpyEADtype) and not isinstance(rattr, NumpyEADtype):
left = left.astype(lattr.numpy_dtype)
elif isinstance(rattr, NumpyEADtype) and not isinstance(lattr, NumpyEADtype):
right = right.astype(rattr.numpy_dtype)
orig_assert_attr_equal(attr, left, right, obj)
@pytest.fixture(params=["float", "object"])
def dtype(request):
return NumpyEADtype(np.dtype(request.param))
@pytest.fixture
def allow_in_pandas(monkeypatch):
"""
A monkeypatch to tells pandas to let us in.
By default, passing a NumpyExtensionArray to an index / series / frame
constructor will unbox that NumpyExtensionArray to an ndarray, and treat
it as a non-EA column. We don't want people using EAs without
reason.
The mechanism for this is a check against ABCNumpyExtensionArray
in each constructor.
But, for testing, we need to allow them in pandas. So we patch
the _typ of NumpyExtensionArray, so that we evade the ABCNumpyExtensionArray
check.
"""
with monkeypatch.context() as m:
m.setattr(NumpyExtensionArray, "_typ", "extension")
m.setattr(blocks, "can_hold_element", _can_hold_element_patched)
m.setattr(tm.asserters, "assert_attr_equal", _assert_attr_equal)
yield
@pytest.fixture
def data(allow_in_pandas, dtype):
if dtype.numpy_dtype == "object":
return pd.Series([(i,) for i in range(100)]).array
return NumpyExtensionArray(np.arange(1, 101, dtype=dtype._dtype))
@pytest.fixture
def data_missing(allow_in_pandas, dtype):
if dtype.numpy_dtype == "object":
return NumpyExtensionArray(np.array([np.nan, (1,)], dtype=object))
return NumpyExtensionArray(np.array([np.nan, 1.0]))
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def na_cmp():
def cmp(a, b):
return np.isnan(a) and np.isnan(b)
return cmp
@pytest.fixture
def data_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, C, A] with
A < B < C
"""
if dtype.numpy_dtype == "object":
# Use an empty tuple for first element, then remove,
# to disable np.array's shape inference.
return NumpyExtensionArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
return NumpyExtensionArray(np.array([1, 2, 0]))
@pytest.fixture
def data_missing_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, NA, A] with
A < B and NA missing.
"""
if dtype.numpy_dtype == "object":
return NumpyExtensionArray(np.array([(1,), np.nan, (0,)], dtype=object))
return NumpyExtensionArray(np.array([1, np.nan, 0]))
@pytest.fixture
def data_for_grouping(allow_in_pandas, dtype):
"""Data for factorization, grouping, and unique tests.
Expected to be like [B, B, NA, NA, A, A, B, C]
Where A < B < C and NA is missing
"""
if dtype.numpy_dtype == "object":
a, b, c = (1,), (2,), (3,)
else:
a, b, c = np.arange(3)
return NumpyExtensionArray(
np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
)
@pytest.fixture
def skip_numpy_object(dtype, request):
"""
Tests for NumpyExtensionArray with nested data. Users typically won't create
these objects via `pd.array`, but they can show up through `.array`
on a Series with nested data. Many of the base tests fail, as they aren't
appropriate for nested data.
This fixture allows these tests to be skipped when used as a usefixtures
marker to either an individual test or a test class.
"""
if dtype == "object":
mark = pytest.mark.xfail(reason="Fails for object dtype")
request.node.add_marker(mark)
skip_nested = pytest.mark.usefixtures("skip_numpy_object")
class BaseNumPyTests:
pass
class TestCasting(BaseNumPyTests, base.BaseCastingTests):
pass
class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests):
@pytest.mark.skip(reason="We don't register our dtype")
# We don't want to register. This test should probably be split in two.
def test_from_dtype(self, data):
pass
@skip_nested
def test_series_constructor_scalar_with_index(self, data, dtype):
# ValueError: Length of passed values is 1, index implies 3.
super().test_series_constructor_scalar_with_index(data, dtype)
class TestDtype(BaseNumPyTests, base.BaseDtypeTests):
def test_check_dtype(self, data, request):
if data.dtype.numpy_dtype == "object":
request.node.add_marker(
pytest.mark.xfail(
reason=f"NumpyExtensionArray expectedly clashes with a "
f"NumPy name: {data.dtype.numpy_dtype}"
)
)
super().test_check_dtype(data)
def test_is_not_object_type(self, dtype, request):
if dtype.numpy_dtype == "object":
# Different from BaseDtypeTests.test_is_not_object_type
# because NumpyEADtype(object) is an object type
assert is_object_dtype(dtype)
else:
super().test_is_not_object_type(dtype)
class TestGetitem(BaseNumPyTests, base.BaseGetitemTests):
@skip_nested
def test_getitem_scalar(self, data):
# AssertionError
super().test_getitem_scalar(data)
class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests):
pass
class TestInterface(BaseNumPyTests, base.BaseInterfaceTests):
@skip_nested
def test_array_interface(self, data):
# NumPy array shape inference
super().test_array_interface(data)
class TestMethods(BaseNumPyTests, base.BaseMethodsTests):
@skip_nested
def test_shift_fill_value(self, data):
# np.array shape inference. Shift implementation fails.
super().test_shift_fill_value(data)
@skip_nested
def test_fillna_copy_frame(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_frame(data_missing)
@skip_nested
def test_fillna_copy_series(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_series(data_missing)
@skip_nested
def test_searchsorted(self, data_for_sorting, as_series):
# Test setup fails.
super().test_searchsorted(data_for_sorting, as_series)
@pytest.mark.xfail(reason="NumpyExtensionArray.diff may fail on dtype")
def test_diff(self, data, periods):
return super().test_diff(data, periods)
def test_insert(self, data, request):
if data.dtype.numpy_dtype == object:
mark = pytest.mark.xfail(reason="Dimension mismatch in np.concatenate")
request.node.add_marker(mark)
super().test_insert(data)
@skip_nested
def test_insert_invalid(self, data, invalid_scalar):
# NumpyExtensionArray[object] can hold anything, so skip
super().test_insert_invalid(data, invalid_scalar)
class TestArithmetics(BaseNumPyTests, base.BaseArithmeticOpsTests):
divmod_exc = None
series_scalar_exc = None
frame_scalar_exc = None
series_array_exc = None
@skip_nested
def test_divmod(self, data):
super().test_divmod(data)
@skip_nested
def test_divmod_series_array(self, data):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, data, exc=None)
@skip_nested
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_array(self, data, all_arithmetic_operators, request):
opname = all_arithmetic_operators
if data.dtype.numpy_dtype == object and opname not in ["__add__", "__radd__"]:
mark = pytest.mark.xfail(reason="Fails for object dtype")
request.node.add_marker(mark)
super().test_arith_series_with_array(data, all_arithmetic_operators)
@skip_nested
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
class TestPrinting(BaseNumPyTests, base.BasePrintingTests):
pass
class TestNumericReduce(BaseNumPyTests, base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
result = getattr(s, op_name)(skipna=skipna)
# avoid coercing int -> float. Just cast to the actual numpy type.
expected = getattr(s.astype(s.dtype._dtype), op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
@pytest.mark.skip("tests not written yet")
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_frame(self, data, all_numeric_reductions, skipna):
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series(self, data, all_boolean_reductions, skipna):
super().test_reduce_series(data, all_boolean_reductions, skipna)
@skip_nested
class TestBooleanReduce(BaseNumPyTests, base.BaseBooleanReduceTests):
pass
class TestMissing(BaseNumPyTests, base.BaseMissingTests):
@skip_nested
def test_fillna_series(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_series(data_missing)
@skip_nested
def test_fillna_frame(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_frame(data_missing)
class TestReshaping(BaseNumPyTests, base.BaseReshapingTests):
pass
class TestSetitem(BaseNumPyTests, base.BaseSetitemTests):
@skip_nested
def test_setitem_invalid(self, data, invalid_scalar):
# object dtype can hold anything, so doesn't raise
super().test_setitem_invalid(data, invalid_scalar)
@skip_nested
def test_setitem_sequence_broadcasts(self, data, box_in_series):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_sequence_broadcasts(data, box_in_series)
@skip_nested
@pytest.mark.parametrize("setter", ["loc", None])
def test_setitem_mask_broadcast(self, data, setter):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_mask_broadcast(data, setter)
@skip_nested
def test_setitem_scalar_key_sequence_raise(self, data):
# Failed: DID NOT RAISE <class 'ValueError'>
super().test_setitem_scalar_key_sequence_raise(data)
# TODO: there is some issue with NumpyExtensionArray, therefore,
# skip the setitem test for now, and fix it later (GH 31446)
@skip_nested
@pytest.mark.parametrize(
"mask",
[
np.array([True, True, True, False, False]),
pd.array([True, True, True, False, False], dtype="boolean"),
],
ids=["numpy-array", "boolean-array"],
)
def test_setitem_mask(self, data, mask, box_in_series):
super().test_setitem_mask(data, mask, box_in_series)
@skip_nested
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_setitem_integer_array(self, data, idx, box_in_series):
super().test_setitem_integer_array(data, idx, box_in_series)
@pytest.mark.parametrize(
"idx, box_in_series",
[
([0, 1, 2, pd.NA], False),
pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
],
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
)
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
@skip_nested
def test_setitem_slice(self, data, box_in_series):
super().test_setitem_slice(data, box_in_series)
@skip_nested
def test_setitem_loc_iloc_slice(self, data):
super().test_setitem_loc_iloc_slice(data)
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
# https://github.com/pandas-dev/pandas/issues/32395
df = expected = pd.DataFrame({"data": pd.Series(data)})
result = pd.DataFrame(index=df.index)
# because result has object dtype, the attempt to do setting inplace
# is successful, and object dtype is retained
key = full_indexer(df)
result.loc[key, "data"] = df["data"]
# base class method has expected = df; NumpyExtensionArray behaves oddly because
# we patch _typ for these tests.
if data.dtype.numpy_dtype != object:
if not isinstance(key, slice) or key != slice(None):
expected = pd.DataFrame({"data": data.to_numpy()})
tm.assert_frame_equal(result, expected)
@skip_nested
class TestParsing(BaseNumPyTests, base.BaseParsingTests):
pass
class Test2DCompat(BaseNumPyTests, base.NDArrayBacked2DTests):
pass