forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathops.py
604 lines (478 loc) · 15.6 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
"""Operator classes for eval.
"""
from datetime import datetime
from distutils.version import LooseVersion
from functools import partial
import operator
import numpy as np
from pandas._libs.tslibs import Timestamp
from pandas.core.dtypes.common import is_list_like, is_scalar
import pandas.core.common as com
from pandas.core.computation.common import _ensure_decoded, result_type_many
from pandas.core.computation.scope import _DEFAULT_GLOBALS
from pandas.io.formats.printing import pprint_thing, pprint_thing_encoded
_reductions = ("sum", "prod")
_unary_math_ops = (
"sin",
"cos",
"exp",
"log",
"expm1",
"log1p",
"sqrt",
"sinh",
"cosh",
"tanh",
"arcsin",
"arccos",
"arctan",
"arccosh",
"arcsinh",
"arctanh",
"abs",
"log10",
"floor",
"ceil",
)
_binary_math_ops = ("arctan2",)
_mathops = _unary_math_ops + _binary_math_ops
_LOCAL_TAG = "__pd_eval_local_"
class UndefinedVariableError(NameError):
"""
NameError subclass for local variables.
"""
def __init__(self, name, is_local: bool):
if is_local:
msg = "local variable {0!r} is not defined"
else:
msg = "name {0!r} is not defined"
super().__init__(msg.format(name))
class Term:
def __new__(cls, name, env, side=None, encoding=None):
klass = Constant if not isinstance(name, str) else cls
supr_new = super(Term, klass).__new__
return supr_new(klass)
is_local: bool
def __init__(self, name, env, side=None, encoding=None):
# name is a str for Term, but may be something else for subclasses
self._name = name
self.env = env
self.side = side
tname = str(name)
self.is_local = tname.startswith(_LOCAL_TAG) or tname in _DEFAULT_GLOBALS
self._value = self._resolve_name()
self.encoding = encoding
@property
def local_name(self) -> str:
return self.name.replace(_LOCAL_TAG, "")
def __repr__(self) -> str:
return pprint_thing(self.name)
def __call__(self, *args, **kwargs):
return self.value
def evaluate(self, *args, **kwargs):
return self
def _resolve_name(self):
res = self.env.resolve(self.local_name, is_local=self.is_local)
self.update(res)
if hasattr(res, "ndim") and res.ndim > 2:
raise NotImplementedError(
"N-dimensional objects, where N > 2, are not supported with eval"
)
return res
def update(self, value):
"""
search order for local (i.e., @variable) variables:
scope, key_variable
[('locals', 'local_name'),
('globals', 'local_name'),
('locals', 'key'),
('globals', 'key')]
"""
key = self.name
# if it's a variable name (otherwise a constant)
if isinstance(key, str):
self.env.swapkey(self.local_name, key, new_value=value)
self.value = value
@property
def is_scalar(self) -> bool:
return is_scalar(self._value)
@property
def type(self):
try:
# potentially very slow for large, mixed dtype frames
return self._value.values.dtype
except AttributeError:
try:
# ndarray
return self._value.dtype
except AttributeError:
# scalar
return type(self._value)
return_type = type
@property
def raw(self) -> str:
return pprint_thing(
"{0}(name={1!r}, type={2})"
"".format(self.__class__.__name__, self.name, self.type)
)
@property
def is_datetime(self) -> bool:
try:
t = self.type.type
except AttributeError:
t = self.type
return issubclass(t, (datetime, np.datetime64))
@property
def value(self):
return self._value
@value.setter
def value(self, new_value):
self._value = new_value
@property
def name(self):
return self._name
@property
def ndim(self) -> int:
return self._value.ndim
class Constant(Term):
def __init__(self, value, env, side=None, encoding=None):
super().__init__(value, env, side=side, encoding=encoding)
def _resolve_name(self):
return self._name
@property
def name(self):
return self.value
def __repr__(self) -> str:
# in python 2 str() of float
# can truncate shorter than repr()
return repr(self.name)
_bool_op_map = {"not": "~", "and": "&", "or": "|"}
class Op:
"""
Hold an operator of arbitrary arity.
"""
op: str
def __init__(self, op: str, operands, *args, **kwargs):
self.op = _bool_op_map.get(op, op)
self.operands = operands
self.encoding = kwargs.get("encoding", None)
def __iter__(self):
return iter(self.operands)
def __repr__(self) -> str:
"""
Print a generic n-ary operator and its operands using infix notation.
"""
# recurse over the operands
parened = ("({0})".format(pprint_thing(opr)) for opr in self.operands)
return pprint_thing(" {0} ".format(self.op).join(parened))
@property
def return_type(self):
# clobber types to bool if the op is a boolean operator
if self.op in (_cmp_ops_syms + _bool_ops_syms):
return np.bool_
return result_type_many(*(term.type for term in com.flatten(self)))
@property
def has_invalid_return_type(self) -> bool:
types = self.operand_types
obj_dtype_set = frozenset([np.dtype("object")])
return self.return_type == object and types - obj_dtype_set
@property
def operand_types(self):
return frozenset(term.type for term in com.flatten(self))
@property
def is_scalar(self) -> bool:
return all(operand.is_scalar for operand in self.operands)
@property
def is_datetime(self) -> bool:
try:
t = self.return_type.type
except AttributeError:
t = self.return_type
return issubclass(t, (datetime, np.datetime64))
def _in(x, y):
"""Compute the vectorized membership of ``x in y`` if possible, otherwise
use Python.
"""
try:
return x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return y.isin(x)
except AttributeError:
pass
return x in y
def _not_in(x, y):
"""Compute the vectorized membership of ``x not in y`` if possible,
otherwise use Python.
"""
try:
return ~x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return ~y.isin(x)
except AttributeError:
pass
return x not in y
_cmp_ops_syms = (">", "<", ">=", "<=", "==", "!=", "in", "not in")
_cmp_ops_funcs = (
operator.gt,
operator.lt,
operator.ge,
operator.le,
operator.eq,
operator.ne,
_in,
_not_in,
)
_cmp_ops_dict = dict(zip(_cmp_ops_syms, _cmp_ops_funcs))
_bool_ops_syms = ("&", "|", "and", "or")
_bool_ops_funcs = (operator.and_, operator.or_, operator.and_, operator.or_)
_bool_ops_dict = dict(zip(_bool_ops_syms, _bool_ops_funcs))
_arith_ops_syms = ("+", "-", "*", "/", "**", "//", "%")
_arith_ops_funcs = (
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.pow,
operator.floordiv,
operator.mod,
)
_arith_ops_dict = dict(zip(_arith_ops_syms, _arith_ops_funcs))
_special_case_arith_ops_syms = ("**", "//", "%")
_special_case_arith_ops_funcs = (operator.pow, operator.floordiv, operator.mod)
_special_case_arith_ops_dict = dict(
zip(_special_case_arith_ops_syms, _special_case_arith_ops_funcs)
)
_binary_ops_dict = {}
for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict):
_binary_ops_dict.update(d)
def _cast_inplace(terms, acceptable_dtypes, dtype):
"""
Cast an expression inplace.
Parameters
----------
terms : Op
The expression that should cast.
acceptable_dtypes : list of acceptable numpy.dtype
Will not cast if term's dtype in this list.
dtype : str or numpy.dtype
The dtype to cast to.
"""
dt = np.dtype(dtype)
for term in terms:
if term.type in acceptable_dtypes:
continue
try:
new_value = term.value.astype(dt)
except AttributeError:
new_value = dt.type(term.value)
term.update(new_value)
def is_term(obj) -> bool:
return isinstance(obj, Term)
class BinOp(Op):
"""
Hold a binary operator and its operands.
Parameters
----------
op : str
left : Term or Op
right : Term or Op
"""
def __init__(self, op: str, lhs, rhs, **kwargs):
super().__init__(op, (lhs, rhs))
self.lhs = lhs
self.rhs = rhs
self._disallow_scalar_only_bool_ops()
self.convert_values()
try:
self.func = _binary_ops_dict[op]
except KeyError:
# has to be made a list for python3
keys = list(_binary_ops_dict.keys())
raise ValueError(
"Invalid binary operator {0!r}, valid"
" operators are {1}".format(op, keys)
)
def __call__(self, env):
"""
Recursively evaluate an expression in Python space.
Parameters
----------
env : Scope
Returns
-------
object
The result of an evaluated expression.
"""
# recurse over the left/right nodes
left = self.lhs(env)
right = self.rhs(env)
return self.func(left, right)
def evaluate(self, env, engine: str, parser, term_type, eval_in_python):
"""
Evaluate a binary operation *before* being passed to the engine.
Parameters
----------
env : Scope
engine : str
parser : str
term_type : type
eval_in_python : list
Returns
-------
term_type
The "pre-evaluated" expression as an instance of ``term_type``
"""
if engine == "python":
res = self(env)
else:
# recurse over the left/right nodes
left = self.lhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
right = self.rhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
# base cases
if self.op in eval_in_python:
res = self.func(left.value, right.value)
else:
from pandas.core.computation.eval import eval
res = eval(self, local_dict=env, engine=engine, parser=parser)
name = env.add_tmp(res)
return term_type(name, env=env)
def convert_values(self):
"""Convert datetimes to a comparable value in an expression.
"""
def stringify(value):
if self.encoding is not None:
encoder = partial(pprint_thing_encoded, encoding=self.encoding)
else:
encoder = pprint_thing
return encoder(value)
lhs, rhs = self.lhs, self.rhs
if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.is_scalar:
v = rhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(_ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.rhs.update(v)
if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.is_scalar:
v = lhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(_ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.lhs.update(v)
def _disallow_scalar_only_bool_ops(self):
if (
(self.lhs.is_scalar or self.rhs.is_scalar)
and self.op in _bool_ops_dict
and (
not (
issubclass(self.rhs.return_type, (bool, np.bool_))
and issubclass(self.lhs.return_type, (bool, np.bool_))
)
)
):
raise NotImplementedError("cannot evaluate scalar only bool ops")
def isnumeric(dtype) -> bool:
return issubclass(np.dtype(dtype).type, np.number)
class Div(BinOp):
"""
Div operator to special case casting.
Parameters
----------
lhs, rhs : Term or Op
The Terms or Ops in the ``/`` expression.
"""
def __init__(self, lhs, rhs, **kwargs):
super().__init__("/", lhs, rhs, **kwargs)
if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type):
raise TypeError(
"unsupported operand type(s) for {0}:"
" '{1}' and '{2}'".format(self.op, lhs.return_type, rhs.return_type)
)
# do not upcast float32s to float64 un-necessarily
acceptable_dtypes = [np.float32, np.float_]
_cast_inplace(com.flatten(self), acceptable_dtypes, np.float_)
_unary_ops_syms = ("+", "-", "~", "not")
_unary_ops_funcs = (operator.pos, operator.neg, operator.invert, operator.invert)
_unary_ops_dict = dict(zip(_unary_ops_syms, _unary_ops_funcs))
class UnaryOp(Op):
"""
Hold a unary operator and its operands.
Parameters
----------
op : str
The token used to represent the operator.
operand : Term or Op
The Term or Op operand to the operator.
Raises
------
ValueError
* If no function associated with the passed operator token is found.
"""
def __init__(self, op: str, operand):
super().__init__(op, (operand,))
self.operand = operand
try:
self.func = _unary_ops_dict[op]
except KeyError:
raise ValueError(
"Invalid unary operator {0!r}, valid operators "
"are {1}".format(op, _unary_ops_syms)
)
def __call__(self, env):
operand = self.operand(env)
return self.func(operand)
def __repr__(self) -> str:
return pprint_thing("{0}({1})".format(self.op, self.operand))
@property
def return_type(self) -> np.dtype:
operand = self.operand
if operand.return_type == np.dtype("bool"):
return np.dtype("bool")
if isinstance(operand, Op) and (
operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict
):
return np.dtype("bool")
return np.dtype("int")
class MathCall(Op):
def __init__(self, func, args):
super().__init__(func.name, args)
self.func = func
def __call__(self, env):
operands = [op(env) for op in self.operands]
with np.errstate(all="ignore"):
return self.func.func(*operands)
def __repr__(self) -> str:
operands = map(str, self.operands)
return pprint_thing("{0}({1})".format(self.op, ",".join(operands)))
class FuncNode:
def __init__(self, name: str):
from pandas.core.computation.check import _NUMEXPR_INSTALLED, _NUMEXPR_VERSION
if name not in _mathops or (
_NUMEXPR_INSTALLED
and _NUMEXPR_VERSION < LooseVersion("2.6.9")
and name in ("floor", "ceil")
):
raise ValueError('"{0}" is not a supported function'.format(name))
self.name = name
self.func = getattr(np, name)
def __call__(self, *args):
return MathCall(self, args)