forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_timedeltas.py
307 lines (244 loc) · 10.1 KB
/
test_timedeltas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from datetime import timedelta
import numpy as np
import pytest
from pandas._libs.tslibs.dtypes import NpyDatetimeUnit
import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
TimedeltaArray,
)
class TestNonNano:
@pytest.fixture(params=["s", "ms", "us"])
def unit(self, request):
return request.param
@pytest.fixture
def reso(self, unit):
if unit == "s":
return NpyDatetimeUnit.NPY_FR_s.value
elif unit == "ms":
return NpyDatetimeUnit.NPY_FR_ms.value
elif unit == "us":
return NpyDatetimeUnit.NPY_FR_us.value
else:
raise NotImplementedError(unit)
@pytest.fixture
def tda(self, unit):
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
return TimedeltaArray._simple_new(arr, dtype=arr.dtype)
def test_non_nano(self, unit, reso):
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype)
assert tda.dtype == arr.dtype
assert tda[0]._creso == reso
@pytest.mark.parametrize("field", TimedeltaArray._field_ops)
def test_fields(self, tda, field):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = getattr(tda, field)
expected = getattr(tda_nano, field)
tm.assert_numpy_array_equal(result, expected)
def test_to_pytimedelta(self, tda):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = tda.to_pytimedelta()
expected = tda_nano.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, unit, tda):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = tda.total_seconds()
expected = tda_nano.total_seconds()
tm.assert_numpy_array_equal(result, expected)
def test_timedelta_array_total_seconds(self):
# GH34290
expected = Timedelta("2 min").total_seconds()
result = pd.array([Timedelta("2 min")]).total_seconds()[0]
assert result == expected
@pytest.mark.parametrize(
"nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")]
)
def test_add_nat_datetimelike_scalar(self, nat, tda):
result = tda + nat
assert isinstance(result, DatetimeArray)
assert result._creso == tda._creso
assert result.isna().all()
result = nat + tda
assert isinstance(result, DatetimeArray)
assert result._creso == tda._creso
assert result.isna().all()
def test_add_pdnat(self, tda):
result = tda + pd.NaT
assert isinstance(result, TimedeltaArray)
assert result._creso == tda._creso
assert result.isna().all()
result = pd.NaT + tda
assert isinstance(result, TimedeltaArray)
assert result._creso == tda._creso
assert result.isna().all()
# TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert
# or tz_localize with non-nano; implement tests specific to that.
def test_add_datetimelike_scalar(self, tda, tz_naive_fixture):
ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture)
expected = tda.as_unit("ns") + ts
res = tda + ts
tm.assert_extension_array_equal(res, expected)
res = ts + tda
tm.assert_extension_array_equal(res, expected)
ts += Timedelta(1) # case where we can't cast losslessly
exp_values = tda._ndarray + ts.asm8
expected = (
DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype)
.tz_localize("UTC")
.tz_convert(ts.tz)
)
result = tda + ts
tm.assert_extension_array_equal(result, expected)
result = ts + tda
tm.assert_extension_array_equal(result, expected)
def test_mul_scalar(self, tda):
other = 2
result = tda * other
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_mul_listlike(self, tda):
other = np.arange(len(tda))
result = tda * other
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_mul_listlike_object(self, tda):
other = np.arange(len(tda))
result = tda * other.astype(object)
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_numeric_scalar(self, tda):
other = 2
result = tda / other
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_td_scalar(self, tda):
other = timedelta(seconds=1)
result = tda / other
expected = tda._ndarray / np.timedelta64(1, "s")
tm.assert_numpy_array_equal(result, expected)
def test_div_numeric_array(self, tda):
other = np.arange(len(tda))
result = tda / other
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_td_array(self, tda):
other = tda._ndarray + tda._ndarray[-1]
result = tda / other
expected = tda._ndarray / other
tm.assert_numpy_array_equal(result, expected)
def test_add_timedeltaarraylike(self, tda):
tda_nano = tda.astype("m8[ns]")
expected = tda_nano * 2
res = tda_nano + tda
tm.assert_extension_array_equal(res, expected)
res = tda + tda_nano
tm.assert_extension_array_equal(res, expected)
expected = tda_nano * 0
res = tda - tda_nano
tm.assert_extension_array_equal(res, expected)
res = tda_nano - tda
tm.assert_extension_array_equal(res, expected)
class TestTimedeltaArray:
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
def test_astype_int(self, dtype):
arr = TimedeltaArray._from_sequence([Timedelta("1H"), Timedelta("2H")])
if np.dtype(dtype) != np.int64:
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
arr.astype(dtype)
return
result = arr.astype(dtype)
expected = arr._ndarray.view("i8")
tm.assert_numpy_array_equal(result, expected)
def test_setitem_clears_freq(self):
a = TimedeltaArray(pd.timedelta_range("1H", periods=2, freq="H"))
a[0] = Timedelta("1H")
assert a.freq is None
@pytest.mark.parametrize(
"obj",
[
Timedelta(seconds=1),
Timedelta(seconds=1).to_timedelta64(),
Timedelta(seconds=1).to_pytimedelta(),
],
)
def test_setitem_objects(self, obj):
# make sure we accept timedelta64 and timedelta in addition to Timedelta
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
arr[0] = obj
assert arr[0] == Timedelta(seconds=1)
@pytest.mark.parametrize(
"other",
[
1,
np.int64(1),
1.0,
np.datetime64("NaT"),
pd.Timestamp("2021-01-01"),
"invalid",
np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
(np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
pd.Timestamp("2021-01-01").to_period("D"),
],
)
@pytest.mark.parametrize("index", [True, False])
def test_searchsorted_invalid_types(self, other, index):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = TimedeltaArray(data, freq="D")
if index:
arr = pd.Index(arr)
msg = "|".join(
[
"searchsorted requires compatible dtype or scalar",
"value should be a 'Timedelta', 'NaT', or array of those. Got",
]
)
with pytest.raises(TypeError, match=msg):
arr.searchsorted(other)
class TestUnaryOps:
def test_abs(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = abs(arr)
tm.assert_timedelta_array_equal(result, expected)
result2 = np.abs(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_pos(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
result = +arr
tm.assert_timedelta_array_equal(result, arr)
assert not tm.shares_memory(result, arr)
result2 = np.positive(arr)
tm.assert_timedelta_array_equal(result2, arr)
assert not tm.shares_memory(result2, arr)
def test_neg(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_neg_freq(self):
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
expected = TimedeltaArray(-tdi._data, freq=-tdi.freq)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)