forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatetimelike.py
832 lines (683 loc) · 25.9 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
# -*- coding: utf-8 -*-
"""
Base and utility classes for tseries type pandas objects.
"""
import warnings
from pandas import compat
from pandas.compat.numpy import function as nv
from pandas.core.tools.timedeltas import to_timedelta
import numpy as np
from pandas._libs import lib, iNaT, NaT
from pandas._libs.tslibs.timestamps import round_nsint64, RoundTo
from pandas.core.dtypes.common import (
ensure_int64,
is_dtype_equal,
is_float,
is_integer,
is_list_like,
is_scalar,
is_bool_dtype,
is_period_dtype,
is_categorical_dtype,
is_datetime_or_timedelta_dtype,
is_float_dtype,
is_integer_dtype,
is_object_dtype,
is_string_dtype)
from pandas.core.dtypes.generic import (
ABCIndex, ABCSeries, ABCIndexClass)
from pandas.core.dtypes.missing import isna
from pandas.core import common as com, algorithms, ops
import pandas.io.formats.printing as printing
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.util._decorators import Appender, cache_readonly
import pandas.core.dtypes.concat as _concat
import pandas.core.indexes.base as ibase
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
class DatelikeOps(object):
""" common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex """
def strftime(self, date_format):
return Index(self.format(date_format=date_format),
dtype=compat.text_type)
strftime.__doc__ = """
Convert to Index using specified date_format.
Return an Index of formatted strings specified by date_format, which
supports the same string format as the python standard library. Details
of the string format can be found in `python string format doc <{0}>`__
Parameters
----------
date_format : str
Date format string (e.g. "%Y-%m-%d").
Returns
-------
Index
Index of formatted strings
See Also
--------
pandas.to_datetime : Convert the given argument to datetime
DatetimeIndex.normalize : Return DatetimeIndex with times to midnight.
DatetimeIndex.round : Round the DatetimeIndex to the specified freq.
DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq.
Examples
--------
>>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
... periods=3, freq='s')
>>> rng.strftime('%B %d, %Y, %r')
Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',
'March 10, 2018, 09:00:02 AM'],
dtype='object')
""".format("https://docs.python.org/3/library/datetime.html"
"#strftime-and-strptime-behavior")
class TimelikeOps(object):
""" common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex """
_round_doc = (
"""
{op} the data to the specified `freq`.
Parameters
----------
freq : str or Offset
The frequency level to {op} the index to. Must be a fixed
frequency like 'S' (second) not 'ME' (month end). See
:ref:`frequency aliases <timeseries.offset_aliases>` for
a list of possible `freq` values.
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False designates
a non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times
Only relevant for DatetimeIndex
.. versionadded:: 0.24.0
Returns
-------
DatetimeIndex, TimedeltaIndex, or Series
Index of the same type for a DatetimeIndex or TimedeltaIndex,
or a Series with the same index for a Series.
Raises
------
ValueError if the `freq` cannot be converted.
Examples
--------
**DatetimeIndex**
>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')
""")
_round_example = (
""">>> rng.round('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.round("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]
""")
_floor_example = (
""">>> rng.floor('H')
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.floor("H")
0 2018-01-01 11:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]
"""
)
_ceil_example = (
""">>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]
"""
)
def _round(self, freq, mode, ambiguous):
# round the local times
values = _ensure_datetimelike_to_i8(self)
result = round_nsint64(values, mode, freq)
result = self._maybe_mask_results(result, fill_value=NaT)
attribs = self._get_attributes_dict()
if 'freq' in attribs:
attribs['freq'] = None
if 'tz' in attribs:
attribs['tz'] = None
return self._ensure_localized(
self._shallow_copy(result, **attribs), ambiguous
)
@Appender((_round_doc + _round_example).format(op="round"))
def round(self, freq, ambiguous='raise'):
return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous)
@Appender((_round_doc + _floor_example).format(op="floor"))
def floor(self, freq, ambiguous='raise'):
return self._round(freq, RoundTo.MINUS_INFTY, ambiguous)
@Appender((_round_doc + _ceil_example).format(op="ceil"))
def ceil(self, freq, ambiguous='raise'):
return self._round(freq, RoundTo.PLUS_INFTY, ambiguous)
class DatetimeIndexOpsMixin(DatetimeLikeArrayMixin):
""" common ops mixin to support a unified interface datetimelike Index """
# DatetimeLikeArrayMixin assumes subclasses are mutable, so these are
# properties there. They can be made into cache_readonly for Index
# subclasses bc they are immutable
inferred_freq = cache_readonly(DatetimeLikeArrayMixin.inferred_freq.fget)
_isnan = cache_readonly(DatetimeLikeArrayMixin._isnan.fget)
hasnans = cache_readonly(DatetimeLikeArrayMixin.hasnans.fget)
_resolution = cache_readonly(DatetimeLikeArrayMixin._resolution.fget)
resolution = cache_readonly(DatetimeLikeArrayMixin.resolution.fget)
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
if not isinstance(other, ABCIndexClass):
return False
elif not isinstance(other, type(self)):
try:
other = type(self)(other)
except Exception:
return False
if not is_dtype_equal(self.dtype, other.dtype):
# have different timezone
return False
elif is_period_dtype(self):
if not is_period_dtype(other):
return False
if self.freq != other.freq:
return False
return np.array_equal(self.asi8, other.asi8)
@staticmethod
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
""" create the join wrapper methods """
@staticmethod
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries)):
left = left.view('i8')
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries)):
right = right.view('i8')
results = joinf(left, right)
if with_indexers:
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
@Appender(DatetimeLikeArrayMixin._evaluate_compare.__doc__)
def _evaluate_compare(self, other, op):
result = DatetimeLikeArrayMixin._evaluate_compare(self, other, op)
if is_bool_dtype(result):
return result
try:
return Index(result)
except TypeError:
return result
def _ensure_localized(self, arg, ambiguous='raise', from_utc=False):
"""
ensure that we are re-localized
This is for compat as we can then call this on all datetimelike
indexes generally (ignored for Period/Timedelta)
Parameters
----------
arg : DatetimeIndex / i8 ndarray
ambiguous : str, bool, or bool-ndarray, default 'raise'
from_utc : bool, default False
If True, localize the i8 ndarray to UTC first before converting to
the appropriate tz. If False, localize directly to the tz.
Returns
-------
localized DTI
"""
# reconvert to local tz
if getattr(self, 'tz', None) is not None:
if not isinstance(arg, ABCIndexClass):
arg = self._simple_new(arg)
if from_utc:
arg = arg.tz_localize('UTC').tz_convert(self.tz)
else:
arg = arg.tz_localize(self.tz, ambiguous=ambiguous)
return arg
def _box_values_as_index(self):
"""
return object Index which contains boxed values
"""
from pandas.core.index import Index
return Index(self._box_values(self.asi8), name=self.name, dtype=object)
def _format_with_header(self, header, **kwargs):
return header + list(self._format_native_types(**kwargs))
@Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs)
def __contains__(self, key):
try:
res = self.get_loc(key)
return (is_scalar(res) or isinstance(res, slice) or
(is_list_like(res) and len(res)))
except (KeyError, TypeError, ValueError):
return False
contains = __contains__
# Try to run function on index first, and then on elements of index
# Especially important for group-by functionality
def map(self, f):
try:
result = f(self)
# Try to use this result if we can
if isinstance(result, np.ndarray):
result = Index(result)
if not isinstance(result, Index):
raise TypeError('The map function must return an Index object')
return result
except Exception:
return self.astype(object).map(f)
def sort_values(self, return_indexer=False, ascending=True):
"""
Return sorted copy of Index
"""
if return_indexer:
_as = self.argsort()
if not ascending:
_as = _as[::-1]
sorted_index = self.take(_as)
return sorted_index, _as
else:
sorted_values = np.sort(self._ndarray_values)
attribs = self._get_attributes_dict()
freq = attribs['freq']
if freq is not None and not is_period_dtype(self):
if freq.n > 0 and not ascending:
freq = freq * -1
elif freq.n < 0 and ascending:
freq = freq * -1
attribs['freq'] = freq
if not ascending:
sorted_values = sorted_values[::-1]
return self._simple_new(sorted_values, **attribs)
@Appender(_index_shared_docs['take'] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = ensure_int64(indices)
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
if isinstance(maybe_slice, slice):
return self[maybe_slice]
taken = self._assert_take_fillable(self.asi8, indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=iNaT)
# keep freq in PeriodArray/Index, reset otherwise
freq = self.freq if is_period_dtype(self) else None
return self._shallow_copy(taken, freq=freq)
_can_hold_na = True
_na_value = NaT
"""The expected NA value to use with this index."""
@property
def asobject(self):
"""Return object Index which contains boxed values.
.. deprecated:: 0.23.0
Use ``astype(object)`` instead.
*this is an internal non-public method*
"""
warnings.warn("'asobject' is deprecated. Use 'astype(object)'"
" instead", FutureWarning, stacklevel=2)
return self.astype(object)
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(to_timedelta(tolerance, box=False))
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError('list-like tolerance size must match '
'target index size')
return tolerance
def tolist(self):
"""
return a list of the underlying data
"""
return list(self.astype(object))
def min(self, axis=None, *args, **kwargs):
"""
Return the minimum value of the Index or minimum along
an axis.
See also
--------
numpy.ndarray.min
"""
_validate_minmax_axis(axis)
nv.validate_min(args, kwargs)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[0] != iNaT:
return self._box_func(i8[0])
if self.hasnans:
min_stamp = self[~self._isnan].asi8.min()
else:
min_stamp = i8.min()
return self._box_func(min_stamp)
except ValueError:
return self._na_value
def argmin(self, axis=None, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See also
--------
numpy.ndarray.argmin
"""
_validate_minmax_axis(axis)
nv.validate_argmin(args, kwargs)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = np.iinfo('int64').max
return i8.argmin()
def max(self, axis=None, *args, **kwargs):
"""
Return the maximum value of the Index or maximum along
an axis.
See also
--------
numpy.ndarray.max
"""
_validate_minmax_axis(axis)
nv.validate_max(args, kwargs)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[-1] != iNaT:
return self._box_func(i8[-1])
if self.hasnans:
max_stamp = self[~self._isnan].asi8.max()
else:
max_stamp = i8.max()
return self._box_func(max_stamp)
except ValueError:
return self._na_value
def argmax(self, axis=None, *args, **kwargs):
"""
Returns the indices of the maximum values along an axis.
See `numpy.ndarray.argmax` for more information on the
`axis` parameter.
See also
--------
numpy.ndarray.argmax
"""
_validate_minmax_axis(axis)
nv.validate_argmax(args, kwargs)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = 0
return i8.argmax()
@property
def _formatter_func(self):
raise com.AbstractMethodError(self)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value)
"""
attrs = super(DatetimeIndexOpsMixin, self)._format_attrs()
for attrib in self._attributes:
if attrib == 'freq':
freq = self.freqstr
if freq is not None:
freq = "'%s'" % freq
attrs.append(('freq', freq))
return attrs
def _convert_scalar_indexer(self, key, kind=None):
"""
we don't allow integer or float indexing on datetime-like when using
loc
Parameters
----------
key : label of the slice bound
kind : {'ix', 'loc', 'getitem', 'iloc'} or None
"""
assert kind in ['ix', 'loc', 'getitem', 'iloc', None]
# we don't allow integer/float indexing for loc
# we don't allow float indexing for ix/getitem
if is_scalar(key):
is_int = is_integer(key)
is_flt = is_float(key)
if kind in ['loc'] and (is_int or is_flt):
self._invalid_indexer('index', key)
elif kind in ['ix', 'getitem'] and is_flt:
self._invalid_indexer('index', key)
return (super(DatetimeIndexOpsMixin, self)
._convert_scalar_indexer(key, kind=kind))
@classmethod
def _add_datetimelike_methods(cls):
"""
add in the datetimelike methods (as we may have to override the
superclass)
"""
def __add__(self, other):
# dispatch to ExtensionArray implementation
result = super(cls, self).__add__(other)
return wrap_arithmetic_op(self, other, result)
cls.__add__ = __add__
def __radd__(self, other):
# alias for __add__
return self.__add__(other)
cls.__radd__ = __radd__
def __sub__(self, other):
# dispatch to ExtensionArray implementation
result = super(cls, self).__sub__(other)
return wrap_arithmetic_op(self, other, result)
cls.__sub__ = __sub__
def __rsub__(self, other):
result = super(cls, self).__rsub__(other)
return wrap_arithmetic_op(self, other, result)
cls.__rsub__ = __rsub__
def isin(self, values):
"""
Compute boolean array of whether each index value is found in the
passed set of values
Parameters
----------
values : set or sequence of values
Returns
-------
is_contained : ndarray (boolean dtype)
"""
if not isinstance(values, type(self)):
try:
values = type(self)(values)
except ValueError:
return self.astype(object).isin(values)
return algorithms.isin(self.asi8, values.asi8)
def repeat(self, repeats, *args, **kwargs):
"""
Analogous to ndarray.repeat
"""
nv.validate_repeat(args, kwargs)
if is_period_dtype(self):
freq = self.freq
else:
freq = None
return self._shallow_copy(self.asi8.repeat(repeats),
freq=freq)
@Appender(_index_shared_docs['where'] % _index_doc_kwargs)
def where(self, cond, other=None):
other = _ensure_datetimelike_to_i8(other, to_utc=True)
values = _ensure_datetimelike_to_i8(self, to_utc=True)
result = np.where(cond, values, other).astype('i8')
result = self._ensure_localized(result, from_utc=True)
return self._shallow_copy(result,
**self._get_attributes_dict())
def _summary(self, name=None):
"""
Return a summarized representation
Parameters
----------
name : str
name to use in the summary representation
Returns
-------
String with a summarized representation of the index
"""
formatter = self._formatter_func
if len(self) > 0:
index_summary = ', %s to %s' % (formatter(self[0]),
formatter(self[-1]))
else:
index_summary = ''
if name is None:
name = type(self).__name__
result = '%s: %s entries%s' % (printing.pprint_thing(name),
len(self), index_summary)
if self.freq:
result += '\nFreq: %s' % self.freqstr
# display as values, not quoted
result = result.replace("'", "")
return result
def _concat_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class
"""
attribs = self._get_attributes_dict()
attribs['name'] = name
if not is_period_dtype(self):
# reset freq
attribs['freq'] = None
if getattr(self, 'tz', None) is not None:
return _concat._concat_datetimetz(to_concat, name)
else:
new_data = np.concatenate([c.asi8 for c in to_concat])
return self._simple_new(new_data, **attribs)
def astype(self, dtype, copy=True):
if is_object_dtype(dtype):
return self._box_values_as_index()
elif is_string_dtype(dtype) and not is_categorical_dtype(dtype):
return Index(self.format(), name=self.name, dtype=object)
elif is_integer_dtype(dtype):
return Index(self.values.astype('i8', copy=copy), name=self.name,
dtype='i8')
elif (is_datetime_or_timedelta_dtype(dtype) and
not is_dtype_equal(self.dtype, dtype)) or is_float_dtype(dtype):
# disallow conversion between datetime/timedelta,
# and conversions for any datetimelike to float
msg = 'Cannot cast {name} to dtype {dtype}'
raise TypeError(msg.format(name=type(self).__name__, dtype=dtype))
return super(DatetimeIndexOpsMixin, self).astype(dtype, copy=copy)
@Appender(DatetimeLikeArrayMixin._time_shift.__doc__)
def _time_shift(self, periods, freq=None):
result = DatetimeLikeArrayMixin._time_shift(self, periods, freq=freq)
result.name = self.name
return result
def _validate_minmax_axis(axis):
"""
Ensure that the axis argument passed to min, max, argmin, or argmax is
zero or None, as otherwise it will be incorrectly ignored.
Parameters
----------
axis : int or None
Raises
------
ValueError
"""
ndim = 1 # hard-coded for Index
if axis is not None and axis >= ndim:
raise ValueError("`axis` must be fewer than the number of "
"dimensions ({ndim})".format(ndim=ndim))
def _ensure_datetimelike_to_i8(other, to_utc=False):
"""
helper for coercing an input scalar or array to i8
Parameters
----------
other : 1d array
to_utc : bool, default False
If True, convert the values to UTC before extracting the i8 values
If False, extract the i8 values directly.
Returns
-------
i8 1d array
"""
if is_scalar(other) and isna(other):
return iNaT
elif isinstance(other, ABCIndexClass):
# convert tz if needed
if getattr(other, 'tz', None) is not None:
if to_utc:
other = other.tz_convert('UTC')
else:
other = other.tz_localize(None)
else:
try:
return np.array(other, copy=False).view('i8')
except TypeError:
# period array cannot be coerces to int
other = Index(other)
return other.asi8
def wrap_arithmetic_op(self, other, result):
if result is NotImplemented:
return NotImplemented
if not isinstance(result, Index):
# Index.__new__ will choose appropriate subclass for dtype
result = Index(result)
res_name = ops.get_op_result_name(self, other)
result.name = res_name
return result
def wrap_array_method(method, pin_name=False):
"""
Wrap a DatetimeArray/TimedeltaArray/PeriodArray method so that the
returned object is an Index subclass instead of ndarray or ExtensionArray
subclass.
Parameters
----------
method : method of Datetime/Timedelta/Period Array class
pin_name : bool
Whether to set name=self.name on the output Index
Returns
-------
method
"""
def index_method(self, *args, **kwargs):
result = method(self, *args, **kwargs)
# Index.__new__ will choose the appropriate subclass to return
result = Index(result)
if pin_name:
result.name = self.name
return result
index_method.__name__ = method.__name__
index_method.__doc__ = method.__doc__
return index_method
def wrap_field_accessor(prop):
"""
Wrap a DatetimeArray/TimedeltaArray/PeriodArray array-returning property
to return an Index subclass instead of ndarray or ExtensionArray subclass.
Parameters
----------
prop : property
Returns
-------
new_prop : property
"""
fget = prop.fget
def f(self):
result = fget(self)
if is_bool_dtype(result):
# return numpy array b/c there is no BoolIndex
return result
return Index(result, name=self.name)
f.__name__ = fget.__name__
f.__doc__ = fget.__doc__
return property(f)