forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatetimelike.py
1613 lines (1336 loc) · 53.4 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from datetime import datetime, timedelta
import operator
import warnings
import numpy as np
from pandas._libs import NaT, algos, iNaT, lib
from pandas._libs.tslibs.period import (
DIFFERENT_FREQ, IncompatibleFrequency, Period)
from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds
from pandas._libs.tslibs.timestamps import (
RoundTo, maybe_integer_op_deprecated, round_nsint64)
import pandas.compat as compat
from pandas.compat.numpy import function as nv
from pandas.errors import (
AbstractMethodError, NullFrequencyError, PerformanceWarning)
from pandas.util._decorators import Appender, Substitution, deprecate_kwarg
from pandas.core.dtypes.common import (
is_bool_dtype, is_categorical_dtype, is_datetime64_any_dtype,
is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype,
is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer_dtype,
is_list_like, is_object_dtype, is_offsetlike, is_period_dtype,
is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype,
needs_i8_conversion, pandas_dtype)
from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries
from pandas.core.dtypes.missing import isna
from pandas.core import nanops
from pandas.core.algorithms import checked_add_with_arr, take, unique1d
import pandas.core.common as com
from pandas.tseries import frequencies
from pandas.tseries.offsets import DateOffset, Tick
from .base import ExtensionOpsMixin
def _make_comparison_op(cls, op):
# TODO: share code with indexes.base version? Main difference is that
# the block for MultiIndex was removed here.
def cmp_method(self, other):
if isinstance(other, ABCDataFrame):
return NotImplemented
if isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries)):
if other.ndim > 0 and len(self) != len(other):
raise ValueError('Lengths must match to compare')
if needs_i8_conversion(self) and needs_i8_conversion(other):
# we may need to directly compare underlying
# representations
return self._evaluate_compare(other, op)
# numpy will show a DeprecationWarning on invalid elementwise
# comparisons, this will raise in the future
with warnings.catch_warnings(record=True):
warnings.filterwarnings("ignore", "elementwise", FutureWarning)
with np.errstate(all='ignore'):
result = op(self._data, np.asarray(other))
return result
name = '__{name}__'.format(name=op.__name__)
# TODO: docstring?
return compat.set_function_name(cmp_method, name, cls)
class AttributesMixin(object):
@property
def _attributes(self):
# Inheriting subclass should implement _attributes as a list of strings
raise AbstractMethodError(self)
@classmethod
def _simple_new(cls, values, **kwargs):
raise AbstractMethodError(cls)
def _get_attributes_dict(self):
"""
return an attributes dict for my class
"""
return {k: getattr(self, k, None) for k in self._attributes}
@property
def _scalar_type(self):
# type: () -> Union[type, Tuple[type]]
"""The scalar associated with this datelike
* PeriodArray : Period
* DatetimeArray : Timestamp
* TimedeltaArray : Timedelta
"""
raise AbstractMethodError(self)
def _scalar_from_string(self, value):
# type: (str) -> Union[Period, Timestamp, Timedelta, NaTType]
"""
Construct a scalar type from a string.
Parameters
----------
value : str
Returns
-------
Period, Timestamp, or Timedelta, or NaT
Whatever the type of ``self._scalar_type`` is.
Notes
-----
This should call ``self._check_compatible_with`` before
unboxing the result.
"""
raise AbstractMethodError(self)
def _unbox_scalar(self, value):
# type: (Union[Period, Timestamp, Timedelta, NaTType]) -> int
"""
Unbox the integer value of a scalar `value`.
Parameters
----------
value : Union[Period, Timestamp, Timedelta]
Returns
-------
int
Examples
--------
>>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP
10000000000
"""
raise AbstractMethodError(self)
def _check_compatible_with(self, other):
# type: (Union[Period, Timestamp, Timedelta, NaTType]) -> None
"""
Verify that `self` and `other` are compatible.
* DatetimeArray verifies that the timezones (if any) match
* PeriodArray verifies that the freq matches
* Timedelta has no verification
In each case, NaT is considered compatible.
Parameters
----------
other
Raises
------
Exception
"""
raise AbstractMethodError(self)
class DatelikeOps(object):
"""
Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex.
"""
@Substitution(URL="https://docs.python.org/3/library/datetime.html"
"#strftime-and-strptime-behavior")
def strftime(self, date_format):
"""
Convert to Index using specified date_format.
Return an Index of formatted strings specified by date_format, which
supports the same string format as the python standard library. Details
of the string format can be found in `python string format
doc <%(URL)s>`__
Parameters
----------
date_format : str
Date format string (e.g. "%%Y-%%m-%%d").
Returns
-------
Index
Index of formatted strings
See Also
--------
to_datetime : Convert the given argument to datetime.
DatetimeIndex.normalize : Return DatetimeIndex with times to midnight.
DatetimeIndex.round : Round the DatetimeIndex to the specified freq.
DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq.
Examples
--------
>>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
... periods=3, freq='s')
>>> rng.strftime('%%B %%d, %%Y, %%r')
Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',
'March 10, 2018, 09:00:02 AM'],
dtype='object')
"""
from pandas import Index
return Index(self._format_native_types(date_format=date_format))
class TimelikeOps(object):
"""
Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex.
"""
_round_doc = (
"""
Perform {op} operation on the data to the specified `freq`.
Parameters
----------
freq : str or Offset
The frequency level to {op} the index to. Must be a fixed
frequency like 'S' (second) not 'ME' (month end). See
:ref:`frequency aliases <timeseries.offset_aliases>` for
a list of possible `freq` values.
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
Only relevant for DatetimeIndex:
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False designates
a non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times
.. versionadded:: 0.24.0
nonexistent : 'shift', 'NaT', default 'raise'
A nonexistent time does not exist in a particular timezone
where clocks moved forward due to DST.
- 'shift' will shift the nonexistent time forward to the closest
existing time
- 'NaT' will return NaT where there are nonexistent times
- 'raise' will raise an NonExistentTimeError if there are
nonexistent times
.. versionadded:: 0.24.0
Returns
-------
DatetimeIndex, TimedeltaIndex, or Series
Index of the same type for a DatetimeIndex or TimedeltaIndex,
or a Series with the same index for a Series.
Raises
------
ValueError if the `freq` cannot be converted.
Examples
--------
**DatetimeIndex**
>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')
""")
_round_example = (
""">>> rng.round('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.round("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]
""")
_floor_example = (
""">>> rng.floor('H')
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.floor("H")
0 2018-01-01 11:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]
"""
)
_ceil_example = (
""">>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)
**Series**
>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]
"""
)
def _round(self, freq, mode, ambiguous, nonexistent):
# round the local times
values = _ensure_datetimelike_to_i8(self)
result = round_nsint64(values, mode, freq)
result = self._maybe_mask_results(result, fill_value=NaT)
attribs = self._get_attributes_dict()
attribs['freq'] = None
if 'tz' in attribs:
attribs['tz'] = None
return self._ensure_localized(
self._simple_new(result, **attribs), ambiguous, nonexistent
)
@Appender((_round_doc + _round_example).format(op="round"))
def round(self, freq, ambiguous='raise', nonexistent='raise'):
return self._round(
freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent
)
@Appender((_round_doc + _floor_example).format(op="floor"))
def floor(self, freq, ambiguous='raise', nonexistent='raise'):
return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent)
@Appender((_round_doc + _ceil_example).format(op="ceil"))
def ceil(self, freq, ambiguous='raise', nonexistent='raise'):
return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent)
class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin):
"""
Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray
Assumes that __new__/__init__ defines:
_data
_freq
and that the inheriting class has methods:
_generate_range
"""
@property
def _box_func(self):
"""
box function to get object from internal representation
"""
raise AbstractMethodError(self)
def _box_values(self, values):
"""
apply box func to passed values
"""
return lib.map_infer(values, self._box_func)
def __iter__(self):
return (self._box_func(v) for v in self.asi8)
@property
def asi8(self):
# type: () -> ndarray
"""
Integer representation of the values.
Returns
-------
ndarray
An ndarray with int64 dtype.
"""
# do not cache or you'll create a memory leak
return self._data.view('i8')
@property
def _ndarray_values(self):
return self._data
# ----------------------------------------------------------------
# Rendering Methods
def _format_native_types(self, na_rep='NaT', date_format=None):
"""
Helper method for astype when converting to strings.
Returns
-------
ndarray[str]
"""
raise AbstractMethodError(self)
def _formatter(self, boxed=False):
# TODO: Remove Datetime & DatetimeTZ formatters.
return "'{}'".format
# ----------------------------------------------------------------
# Array-Like / EA-Interface Methods
@property
def nbytes(self):
return self._data.nbytes
@property
def shape(self):
return (len(self),)
@property
def size(self):
# type: () -> int
"""The number of elements in this array."""
return np.prod(self.shape)
def __len__(self):
return len(self._data)
def __getitem__(self, key):
"""
This getitem defers to the underlying array, which by-definition can
only handle list-likes, slices, and integer scalars
"""
is_int = lib.is_integer(key)
if lib.is_scalar(key) and not is_int:
raise IndexError("only integers, slices (`:`), ellipsis (`...`), "
"numpy.newaxis (`None`) and integer or boolean "
"arrays are valid indices")
getitem = self._data.__getitem__
if is_int:
val = getitem(key)
return self._box_func(val)
if com.is_bool_indexer(key):
key = np.asarray(key, dtype=bool)
if key.all():
key = slice(0, None, None)
else:
key = lib.maybe_booleans_to_slice(key.view(np.uint8))
attribs = self._get_attributes_dict()
is_period = is_period_dtype(self)
if is_period:
freq = self.freq
else:
freq = None
if isinstance(key, slice):
if self.freq is not None and key.step is not None:
freq = key.step * self.freq
else:
freq = self.freq
elif key is Ellipsis:
# GH#21282 indexing with Ellipsis is similar to a full slice,
# should preserve `freq` attribute
freq = self.freq
attribs['freq'] = freq
result = getitem(key)
if result.ndim > 1:
# To support MPL which performs slicing with 2 dim
# even though it only has 1 dim by definition
if is_period:
return self._simple_new(result, **attribs)
return result
return self._simple_new(result, **attribs)
def __setitem__(
self,
key, # type: Union[int, Sequence[int], Sequence[bool], slice]
value, # type: Union[NaTType, Scalar, Sequence[Scalar]]
):
# type: (...) -> None
# I'm fudging the types a bit here. The "Scalar" above really depends
# on type(self). For PeriodArray, it's Period (or stuff coercible
# to a period in from_sequence). For DatetimeArray, it's Timestamp...
# I don't know if mypy can do that, possibly with Generics.
# https://mypy.readthedocs.io/en/latest/generics.html
if is_list_like(value):
is_slice = isinstance(key, slice)
if lib.is_scalar(key):
raise ValueError("setting an array element with a sequence.")
if (not is_slice
and len(key) != len(value)
and not com.is_bool_indexer(key)):
msg = ("shape mismatch: value array of length '{}' does not "
"match indexing result of length '{}'.")
raise ValueError(msg.format(len(key), len(value)))
if not is_slice and len(key) == 0:
return
value = type(self)._from_sequence(value, dtype=self.dtype)
self._check_compatible_with(value)
value = value.asi8
elif isinstance(value, self._scalar_type):
self._check_compatible_with(value)
value = self._unbox_scalar(value)
elif isna(value) or value == iNaT:
value = iNaT
else:
msg = (
"'value' should be a '{scalar}', 'NaT', or array of those. "
"Got '{typ}' instead."
)
raise TypeError(msg.format(scalar=self._scalar_type.__name__,
typ=type(value).__name__))
self._data[key] = value
self._maybe_clear_freq()
def _maybe_clear_freq(self):
# inplace operations like __setitem__ may invalidate the freq of
# DatetimeArray and TimedeltaArray
pass
def astype(self, dtype, copy=True):
# Some notes on cases we don't have to handle here in the base class:
# 1. PeriodArray.astype handles period -> period
# 2. DatetimeArray.astype handles conversion between tz.
# 3. DatetimeArray.astype handles datetime -> period
from pandas import Categorical
dtype = pandas_dtype(dtype)
if is_object_dtype(dtype):
return self._box_values(self.asi8)
elif is_string_dtype(dtype) and not is_categorical_dtype(dtype):
return self._format_native_types()
elif is_integer_dtype(dtype):
# we deliberately ignore int32 vs. int64 here.
# See https://github.com/pandas-dev/pandas/issues/24381 for more.
values = self.asi8
if is_unsigned_integer_dtype(dtype):
# Again, we ignore int32 vs. int64
values = values.view("uint64")
if copy:
values = values.copy()
return values
elif (is_datetime_or_timedelta_dtype(dtype) and
not is_dtype_equal(self.dtype, dtype)) or is_float_dtype(dtype):
# disallow conversion between datetime/timedelta,
# and conversions for any datetimelike to float
msg = 'Cannot cast {name} to dtype {dtype}'
raise TypeError(msg.format(name=type(self).__name__, dtype=dtype))
elif is_categorical_dtype(dtype):
return Categorical(self, dtype=dtype)
else:
return np.asarray(self, dtype=dtype)
def view(self, dtype=None):
"""
New view on this array with the same data.
Parameters
----------
dtype : numpy dtype, optional
Returns
-------
ndarray
With the specified `dtype`.
"""
return self._data.view(dtype=dtype)
# ------------------------------------------------------------------
# ExtensionArray Interface
# TODO:
# * _from_sequence
# * argsort / _values_for_argsort
# * _reduce
def unique(self):
result = unique1d(self.asi8)
return type(self)(result, dtype=self.dtype)
def _validate_fill_value(self, fill_value):
"""
If a fill_value is passed to `take` convert it to an i8 representation,
raising ValueError if this is not possible.
Parameters
----------
fill_value : object
Returns
-------
fill_value : np.int64
Raises
------
ValueError
"""
raise AbstractMethodError(self)
def take(self, indices, allow_fill=False, fill_value=None):
if allow_fill:
fill_value = self._validate_fill_value(fill_value)
new_values = take(self.asi8,
indices,
allow_fill=allow_fill,
fill_value=fill_value)
return type(self)(new_values, dtype=self.dtype)
@classmethod
def _concat_same_type(cls, to_concat):
dtypes = {x.dtype for x in to_concat}
assert len(dtypes) == 1
dtype = list(dtypes)[0]
values = np.concatenate([x.asi8 for x in to_concat])
return cls(values, dtype=dtype)
def copy(self, deep=False):
values = self.asi8.copy()
return type(self)(values, dtype=self.dtype, freq=self.freq)
def _values_for_factorize(self):
return self.asi8, iNaT
@classmethod
def _from_factorized(cls, values, original):
return cls(values, dtype=original.dtype)
def _values_for_argsort(self):
return self._data
# ------------------------------------------------------------------
# Additional array methods
# These are not part of the EA API, but we implement them because
# pandas assumes they're there.
def searchsorted(self, value, side='left', sorter=None):
"""
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted array `self` such that, if the
corresponding elements in `value` were inserted before the indices,
the order of `self` would be preserved.
Parameters
----------
value : array_like
Values to insert into `self`.
side : {'left', 'right'}, optional
If 'left', the index of the first suitable location found is given.
If 'right', return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of `self`).
sorter : 1-D array_like, optional
Optional array of integer indices that sort `self` into ascending
order. They are typically the result of ``np.argsort``.
Returns
-------
indices : array of ints
Array of insertion points with the same shape as `value`.
"""
if isinstance(value, compat.string_types):
value = self._scalar_from_string(value)
if not (isinstance(value, (self._scalar_type, type(self)))
or isna(value)):
raise ValueError("Unexpected type for 'value': {valtype}"
.format(valtype=type(value)))
self._check_compatible_with(value)
if isinstance(value, type(self)):
value = value.asi8
else:
value = self._unbox_scalar(value)
return self.asi8.searchsorted(value, side=side, sorter=sorter)
def repeat(self, repeats, *args, **kwargs):
"""
Repeat elements of an array.
See Also
--------
numpy.ndarray.repeat
"""
nv.validate_repeat(args, kwargs)
values = self._data.repeat(repeats)
return type(self)(values, dtype=self.dtype)
# ------------------------------------------------------------------
# Null Handling
def isna(self):
return self._isnan
@property # NB: override with cache_readonly in immutable subclasses
def _isnan(self):
"""
return if each value is nan
"""
return (self.asi8 == iNaT)
@property # NB: override with cache_readonly in immutable subclasses
def _hasnans(self):
"""
return if I have any nans; enables various perf speedups
"""
return bool(self._isnan.any())
def _maybe_mask_results(self, result, fill_value=iNaT, convert=None):
"""
Parameters
----------
result : a ndarray
fill_value : object, default iNaT
convert : string/dtype or None
Returns
-------
result : ndarray with values replace by the fill_value
mask the result if needed, convert to the provided dtype if its not
None
This is an internal routine
"""
if self._hasnans:
if convert:
result = result.astype(convert)
if fill_value is None:
fill_value = np.nan
result[self._isnan] = fill_value
return result
# ------------------------------------------------------------------
# Frequency Properties/Methods
@property
def freq(self):
"""
Return the frequency object if it is set, otherwise None.
"""
return self._freq
@freq.setter
def freq(self, value):
if value is not None:
value = frequencies.to_offset(value)
self._validate_frequency(self, value)
self._freq = value
@property
def freqstr(self):
"""
Return the frequency object as a string if its set, otherwise None
"""
if self.freq is None:
return None
return self.freq.freqstr
@property # NB: override with cache_readonly in immutable subclasses
def inferred_freq(self):
"""
Tryies to return a string representing a frequency guess,
generated by infer_freq. Returns None if it can't autodetect the
frequency.
"""
try:
return frequencies.infer_freq(self)
except ValueError:
return None
@property # NB: override with cache_readonly in immutable subclasses
def _resolution(self):
return frequencies.Resolution.get_reso_from_freq(self.freqstr)
@property # NB: override with cache_readonly in immutable subclasses
def resolution(self):
"""
Returns day, hour, minute, second, millisecond or microsecond
"""
return frequencies.Resolution.get_str(self._resolution)
@classmethod
def _validate_frequency(cls, index, freq, **kwargs):
"""
Validate that a frequency is compatible with the values of a given
Datetime Array/Index or Timedelta Array/Index
Parameters
----------
index : DatetimeIndex or TimedeltaIndex
The index on which to determine if the given frequency is valid
freq : DateOffset
The frequency to validate
"""
if is_period_dtype(cls):
# Frequency validation is not meaningful for Period Array/Index
return None
inferred = index.inferred_freq
if index.size == 0 or inferred == freq.freqstr:
return None
try:
on_freq = cls._generate_range(start=index[0], end=None,
periods=len(index), freq=freq,
**kwargs)
if not np.array_equal(index.asi8, on_freq.asi8):
raise ValueError
except ValueError as e:
if "non-fixed" in str(e):
# non-fixed frequencies are not meaningful for timedelta64;
# we retain that error message
raise e
# GH#11587 the main way this is reached is if the `np.array_equal`
# check above is False. This can also be reached if index[0]
# is `NaT`, in which case the call to `cls._generate_range` will
# raise a ValueError, which we re-raise with a more targeted
# message.
raise ValueError('Inferred frequency {infer} from passed values '
'does not conform to passed frequency {passed}'
.format(infer=inferred, passed=freq.freqstr))
# monotonicity/uniqueness properties are called via frequencies.infer_freq,
# see GH#23789
@property
def _is_monotonic_increasing(self):
return algos.is_monotonic(self.asi8, timelike=True)[0]
@property
def _is_monotonic_decreasing(self):
return algos.is_monotonic(self.asi8, timelike=True)[1]
@property
def _is_unique(self):
return len(unique1d(self.asi8)) == len(self)
# ------------------------------------------------------------------
# Arithmetic Methods
def _add_datetimelike_scalar(self, other):
# Overriden by TimedeltaArray
raise TypeError("cannot add {cls} and {typ}"
.format(cls=type(self).__name__,
typ=type(other).__name__))
_add_datetime_arraylike = _add_datetimelike_scalar
def _sub_datetimelike_scalar(self, other):
# Overridden by DatetimeArray
assert other is not NaT
raise TypeError("cannot subtract a datelike from a {cls}"
.format(cls=type(self).__name__))
_sub_datetime_arraylike = _sub_datetimelike_scalar
def _sub_period(self, other):
# Overriden by PeriodArray
raise TypeError("cannot subtract Period from a {cls}"
.format(cls=type(self).__name__))
def _add_offset(self, offset):
raise AbstractMethodError(self)
def _add_delta(self, other):
"""
Add a timedelta-like, Tick or TimedeltaIndex-like object
to self, yielding an int64 numpy array
Parameters
----------
delta : {timedelta, np.timedelta64, Tick,
TimedeltaIndex, ndarray[timedelta64]}
Returns
-------
result : ndarray[int64]
Notes
-----
The result's name is set outside of _add_delta by the calling
method (__add__ or __sub__), if necessary (i.e. for Indexes).
"""
if isinstance(other, (Tick, timedelta, np.timedelta64)):
new_values = self._add_timedeltalike_scalar(other)
elif is_timedelta64_dtype(other):
# ndarray[timedelta64] or TimedeltaArray/index
new_values = self._add_delta_tdi(other)
return new_values
def _add_timedeltalike_scalar(self, other):
"""
Add a delta of a timedeltalike
return the i8 result view
"""
if isna(other):
# i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds
new_values = np.empty(len(self), dtype='i8')
new_values[:] = iNaT
return new_values
inc = delta_to_nanoseconds(other)
new_values = checked_add_with_arr(self.asi8, inc,
arr_mask=self._isnan).view('i8')
new_values = self._maybe_mask_results(new_values)
return new_values.view('i8')
def _add_delta_tdi(self, other):
"""
Add a delta of a TimedeltaIndex
return the i8 result view
"""
if len(self) != len(other):
raise ValueError("cannot add indices of unequal length")
if isinstance(other, np.ndarray):
# ndarray[timedelta64]; wrap in TimedeltaIndex for op
from pandas import TimedeltaIndex
other = TimedeltaIndex(other)
self_i8 = self.asi8
other_i8 = other.asi8
new_values = checked_add_with_arr(self_i8, other_i8,
arr_mask=self._isnan,
b_mask=other._isnan)
if self._hasnans or other._hasnans:
mask = (self._isnan) | (other._isnan)
new_values[mask] = iNaT
return new_values.view('i8')
def _add_nat(self):
"""
Add pd.NaT to self
"""
if is_period_dtype(self):
raise TypeError('Cannot add {cls} and {typ}'
.format(cls=type(self).__name__,
typ=type(NaT).__name__))
# GH#19124 pd.NaT is treated like a timedelta for both timedelta
# and datetime dtypes
result = np.zeros(len(self), dtype=np.int64)
result.fill(iNaT)
return type(self)(result, dtype=self.dtype, freq=None)
def _sub_nat(self):
"""
Subtract pd.NaT from self
"""
# GH#19124 Timedelta - datetime is not in general well-defined.
# We make an exception for pd.NaT, which in this case quacks
# like a timedelta.
# For datetime64 dtypes by convention we treat NaT as a datetime, so
# this subtraction returns a timedelta64 dtype.
# For period dtype, timedelta64 is a close-enough return dtype.
result = np.zeros(len(self), dtype=np.int64)
result.fill(iNaT)
return result.view('timedelta64[ns]')
def _sub_period_array(self, other):
"""
Subtract a Period Array/Index from self. This is only valid if self
is itself a Period Array/Index, raises otherwise. Both objects must
have the same frequency.
Parameters
----------
other : PeriodIndex or PeriodArray
Returns
-------
result : np.ndarray[object]
Array of DateOffset objects; nulls represented by NaT
"""
if not is_period_dtype(self):
raise TypeError("cannot subtract {dtype}-dtype from {cls}"
.format(dtype=other.dtype,
cls=type(self).__name__))
if len(self) != len(other):
raise ValueError("cannot subtract arrays/indices of "