forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatetimelike.py
936 lines (779 loc) · 29.6 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
"""
Base and utility classes for tseries type pandas objects.
"""
import warnings
from datetime import datetime, timedelta
from pandas import compat
from pandas.compat.numpy import function as nv
from pandas.core.tools.timedeltas import to_timedelta
import numpy as np
from pandas.core.dtypes.common import (
_ensure_int64,
is_dtype_equal,
is_float,
is_integer,
is_list_like,
is_scalar,
is_bool_dtype,
is_offsetlike,
is_categorical_dtype,
is_datetime_or_timedelta_dtype,
is_float_dtype,
is_integer_dtype,
is_object_dtype,
is_string_dtype,
is_timedelta64_dtype)
from pandas.core.dtypes.generic import (
ABCIndex, ABCSeries, ABCPeriodIndex, ABCIndexClass)
from pandas.core.dtypes.missing import isna
from pandas.core import common as com, algorithms
from pandas.core.algorithms import checked_add_with_arr
from pandas.core.common import AbstractMethodError
import pandas.io.formats.printing as printing
from pandas._libs import lib, iNaT, NaT
from pandas._libs.tslibs.period import Period
from pandas._libs.tslibs.timedeltas import delta_to_nanoseconds
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.util._decorators import Appender, cache_readonly
import pandas.core.dtypes.concat as _concat
import pandas.tseries.frequencies as frequencies
import pandas.core.indexes.base as ibase
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
class DatelikeOps(object):
""" common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex """
def strftime(self, date_format):
return np.asarray(self.format(date_format=date_format),
dtype=compat.text_type)
strftime.__doc__ = """
Return an array of formatted strings specified by date_format, which
supports the same string format as the python standard library. Details
of the string format can be found in `python string format doc <{0}>`__
Parameters
----------
date_format : str
date format string (e.g. "%Y-%m-%d")
Returns
-------
ndarray of formatted strings
""".format("https://docs.python.org/3/library/datetime.html"
"#strftime-and-strptime-behavior")
class TimelikeOps(object):
""" common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex """
_round_doc = (
"""
%s the index to the specified freq
Parameters
----------
freq : freq string/object
Returns
-------
index of same type
Raises
------
ValueError if the freq cannot be converted
""")
def _round(self, freq, rounder):
from pandas.tseries.frequencies import to_offset
unit = to_offset(freq).nanos
# round the local times
values = _ensure_datetimelike_to_i8(self)
if unit < 1000 and unit % 1000 != 0:
# for nano rounding, work with the last 6 digits separately
# due to float precision
buff = 1000000
result = (buff * (values // buff) + unit *
(rounder((values % buff) / float(unit))).astype('i8'))
elif unit >= 1000 and unit % 1000 != 0:
msg = 'Precision will be lost using frequency: {}'
warnings.warn(msg.format(freq))
result = (unit * rounder(values / float(unit)).astype('i8'))
else:
result = (unit * rounder(values / float(unit)).astype('i8'))
result = self._maybe_mask_results(result, fill_value=NaT)
attribs = self._get_attributes_dict()
if 'freq' in attribs:
attribs['freq'] = None
if 'tz' in attribs:
attribs['tz'] = None
return self._ensure_localized(
self._shallow_copy(result, **attribs))
@Appender(_round_doc % "round")
def round(self, freq, *args, **kwargs):
return self._round(freq, np.round)
@Appender(_round_doc % "floor")
def floor(self, freq):
return self._round(freq, np.floor)
@Appender(_round_doc % "ceil")
def ceil(self, freq):
return self._round(freq, np.ceil)
class DatetimeIndexOpsMixin(object):
""" common ops mixin to support a unified interface datetimelike Index """
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
if not isinstance(other, ABCIndexClass):
return False
elif not isinstance(other, type(self)):
try:
other = type(self)(other)
except Exception:
return False
if not is_dtype_equal(self.dtype, other.dtype):
# have different timezone
return False
# ToDo: Remove this when PeriodDtype is added
elif isinstance(self, ABCPeriodIndex):
if not isinstance(other, ABCPeriodIndex):
return False
if self.freq != other.freq:
return False
return np.array_equal(self.asi8, other.asi8)
def __iter__(self):
return (self._box_func(v) for v in self.asi8)
@staticmethod
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
""" create the join wrapper methods """
@staticmethod
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries)):
left = left.view('i8')
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries)):
right = right.view('i8')
results = joinf(left, right)
if with_indexers:
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
def _evaluate_compare(self, other, op):
"""
We have been called because a comparison between
8 aware arrays. numpy >= 1.11 will
now warn about NaT comparisons
"""
# coerce to a similar object
if not isinstance(other, type(self)):
if not is_list_like(other):
# scalar
other = [other]
elif is_scalar(lib.item_from_zerodim(other)):
# ndarray scalar
other = [other.item()]
other = type(self)(other)
# compare
result = op(self.asi8, other.asi8)
# technically we could support bool dtyped Index
# for now just return the indexing array directly
mask = (self._isnan) | (other._isnan)
if is_bool_dtype(result):
result[mask] = False
return result
try:
result[mask] = iNaT
return Index(result)
except TypeError:
return result
def _ensure_localized(self, result):
"""
ensure that we are re-localized
This is for compat as we can then call this on all datetimelike
indexes generally (ignored for Period/Timedelta)
Parameters
----------
result : DatetimeIndex / i8 ndarray
Returns
-------
localized DTI
"""
# reconvert to local tz
if getattr(self, 'tz', None) is not None:
if not isinstance(result, ABCIndexClass):
result = self._simple_new(result)
result = result.tz_localize(self.tz)
return result
@property
def _box_func(self):
"""
box function to get object from internal representation
"""
raise AbstractMethodError(self)
def _box_values(self, values):
"""
apply box func to passed values
"""
return lib.map_infer(values, self._box_func)
def _box_values_as_index(self):
"""
return object Index which contains boxed values
"""
from pandas.core.index import Index
return Index(self._box_values(self.asi8), name=self.name, dtype=object)
def _format_with_header(self, header, **kwargs):
return header + list(self._format_native_types(**kwargs))
@Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs)
def __contains__(self, key):
try:
res = self.get_loc(key)
return is_scalar(res) or type(res) == slice or np.any(res)
except (KeyError, TypeError, ValueError):
return False
contains = __contains__
def __getitem__(self, key):
"""
This getitem defers to the underlying array, which by-definition can
only handle list-likes, slices, and integer scalars
"""
is_int = is_integer(key)
if is_scalar(key) and not is_int:
raise IndexError("only integers, slices (`:`), ellipsis (`...`), "
"numpy.newaxis (`None`) and integer or boolean "
"arrays are valid indices")
getitem = self._data.__getitem__
if is_int:
val = getitem(key)
return self._box_func(val)
else:
if com.is_bool_indexer(key):
key = np.asarray(key)
if key.all():
key = slice(0, None, None)
else:
key = lib.maybe_booleans_to_slice(key.view(np.uint8))
attribs = self._get_attributes_dict()
is_period = isinstance(self, ABCPeriodIndex)
if is_period:
freq = self.freq
else:
freq = None
if isinstance(key, slice):
if self.freq is not None and key.step is not None:
freq = key.step * self.freq
else:
freq = self.freq
attribs['freq'] = freq
result = getitem(key)
if result.ndim > 1:
# To support MPL which performs slicing with 2 dim
# even though it only has 1 dim by definition
if is_period:
return self._simple_new(result, **attribs)
return result
return self._simple_new(result, **attribs)
@property
def freqstr(self):
"""
Return the frequency object as a string if its set, otherwise None
"""
if self.freq is None:
return None
return self.freq.freqstr
@cache_readonly
def inferred_freq(self):
"""
Trys to return a string representing a frequency guess,
generated by infer_freq. Returns None if it can't autodetect the
frequency.
"""
try:
return frequencies.infer_freq(self)
except ValueError:
return None
def _nat_new(self, box=True):
"""
Return Index or ndarray filled with NaT which has the same
length as the caller.
Parameters
----------
box : boolean, default True
- If True returns a Index as the same as caller.
- If False returns ndarray of np.int64.
"""
result = np.zeros(len(self), dtype=np.int64)
result.fill(iNaT)
if not box:
return result
attribs = self._get_attributes_dict()
if not isinstance(self, ABCPeriodIndex):
attribs['freq'] = None
return self._simple_new(result, **attribs)
# Try to run function on index first, and then on elements of index
# Especially important for group-by functionality
def map(self, f):
try:
result = f(self)
# Try to use this result if we can
if isinstance(result, np.ndarray):
result = Index(result)
if not isinstance(result, Index):
raise TypeError('The map function must return an Index object')
return result
except Exception:
return self.astype(object).map(f)
def sort_values(self, return_indexer=False, ascending=True):
"""
Return sorted copy of Index
"""
if return_indexer:
_as = self.argsort()
if not ascending:
_as = _as[::-1]
sorted_index = self.take(_as)
return sorted_index, _as
else:
sorted_values = np.sort(self._values)
attribs = self._get_attributes_dict()
freq = attribs['freq']
if freq is not None and not isinstance(self, ABCPeriodIndex):
if freq.n > 0 and not ascending:
freq = freq * -1
elif freq.n < 0 and ascending:
freq = freq * -1
attribs['freq'] = freq
if not ascending:
sorted_values = sorted_values[::-1]
return self._simple_new(sorted_values, **attribs)
@Appender(_index_shared_docs['take'] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = _ensure_int64(indices)
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
if isinstance(maybe_slice, slice):
return self[maybe_slice]
taken = self._assert_take_fillable(self.asi8, indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=iNaT)
# keep freq in PeriodIndex, reset otherwise
freq = self.freq if isinstance(self, ABCPeriodIndex) else None
return self._shallow_copy(taken, freq=freq)
def get_duplicates(self):
values = Index.get_duplicates(self)
return self._simple_new(values)
_can_hold_na = True
_na_value = NaT
"""The expected NA value to use with this index."""
@cache_readonly
def _isnan(self):
""" return if each value is nan"""
return (self.asi8 == iNaT)
@property
def asobject(self):
"""DEPRECATED: Use ``astype(object)`` instead.
return object Index which contains boxed values
*this is an internal non-public method*
"""
warnings.warn("'asobject' is deprecated. Use 'astype(object)'"
" instead", FutureWarning, stacklevel=2)
return self.astype(object)
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(to_timedelta(tolerance, box=False))
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError('list-like tolerance size must match '
'target index size')
return tolerance
def _maybe_mask_results(self, result, fill_value=None, convert=None):
"""
Parameters
----------
result : a ndarray
convert : string/dtype or None
Returns
-------
result : ndarray with values replace by the fill_value
mask the result if needed, convert to the provided dtype if its not
None
This is an internal routine
"""
if self.hasnans:
if convert:
result = result.astype(convert)
if fill_value is None:
fill_value = np.nan
result[self._isnan] = fill_value
return result
def tolist(self):
"""
return a list of the underlying data
"""
return list(self.astype(object))
def min(self, axis=None, *args, **kwargs):
"""
Return the minimum value of the Index or minimum along
an axis.
See also
--------
numpy.ndarray.min
"""
nv.validate_min(args, kwargs)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[0] != iNaT:
return self._box_func(i8[0])
if self.hasnans:
min_stamp = self[~self._isnan].asi8.min()
else:
min_stamp = i8.min()
return self._box_func(min_stamp)
except ValueError:
return self._na_value
def argmin(self, axis=None, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See also
--------
numpy.ndarray.argmin
"""
nv.validate_argmin(args, kwargs)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = np.iinfo('int64').max
return i8.argmin()
def max(self, axis=None, *args, **kwargs):
"""
Return the maximum value of the Index or maximum along
an axis.
See also
--------
numpy.ndarray.max
"""
nv.validate_max(args, kwargs)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[-1] != iNaT:
return self._box_func(i8[-1])
if self.hasnans:
max_stamp = self[~self._isnan].asi8.max()
else:
max_stamp = i8.max()
return self._box_func(max_stamp)
except ValueError:
return self._na_value
def argmax(self, axis=None, *args, **kwargs):
"""
Returns the indices of the maximum values along an axis.
See `numpy.ndarray.argmax` for more information on the
`axis` parameter.
See also
--------
numpy.ndarray.argmax
"""
nv.validate_argmax(args, kwargs)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = 0
return i8.argmax()
@property
def _formatter_func(self):
raise AbstractMethodError(self)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value)
"""
attrs = super(DatetimeIndexOpsMixin, self)._format_attrs()
for attrib in self._attributes:
if attrib == 'freq':
freq = self.freqstr
if freq is not None:
freq = "'%s'" % freq
attrs.append(('freq', freq))
return attrs
@cache_readonly
def _resolution(self):
return frequencies.Resolution.get_reso_from_freq(self.freqstr)
@cache_readonly
def resolution(self):
"""
Returns day, hour, minute, second, millisecond or microsecond
"""
return frequencies.Resolution.get_str(self._resolution)
def _convert_scalar_indexer(self, key, kind=None):
"""
we don't allow integer or float indexing on datetime-like when using
loc
Parameters
----------
key : label of the slice bound
kind : {'ix', 'loc', 'getitem', 'iloc'} or None
"""
assert kind in ['ix', 'loc', 'getitem', 'iloc', None]
# we don't allow integer/float indexing for loc
# we don't allow float indexing for ix/getitem
if is_scalar(key):
is_int = is_integer(key)
is_flt = is_float(key)
if kind in ['loc'] and (is_int or is_flt):
self._invalid_indexer('index', key)
elif kind in ['ix', 'getitem'] and is_flt:
self._invalid_indexer('index', key)
return (super(DatetimeIndexOpsMixin, self)
._convert_scalar_indexer(key, kind=kind))
def _add_datelike(self, other):
raise TypeError("cannot add {0} and {1}"
.format(type(self).__name__,
type(other).__name__))
def _sub_datelike(self, other):
raise AbstractMethodError(self)
def _sub_period(self, other):
return NotImplemented
def _add_offset_array(self, other):
# Array/Index of DateOffset objects
return NotImplemented
def _sub_offset_array(self, other):
# Array/Index of DateOffset objects
return NotImplemented
@classmethod
def _add_datetimelike_methods(cls):
"""
add in the datetimelike methods (as we may have to override the
superclass)
"""
def __add__(self, other):
from pandas.core.index import Index
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.tseries.offsets import DateOffset
other = lib.item_from_zerodim(other)
if isinstance(other, ABCSeries):
return NotImplemented
elif is_timedelta64_dtype(other):
return self._add_delta(other)
elif isinstance(other, (DateOffset, timedelta)):
return self._add_delta(other)
elif is_offsetlike(other):
# Array/Index of DateOffset objects
return self._add_offset_array(other)
elif isinstance(self, TimedeltaIndex) and isinstance(other, Index):
if hasattr(other, '_add_delta'):
return other._add_delta(self)
raise TypeError("cannot add TimedeltaIndex and {typ}"
.format(typ=type(other)))
elif is_integer(other):
return self.shift(other)
elif isinstance(other, (datetime, np.datetime64)):
return self._add_datelike(other)
elif isinstance(other, Index):
return self._add_datelike(other)
else: # pragma: no cover
return NotImplemented
cls.__add__ = __add__
cls.__radd__ = __add__
def __sub__(self, other):
from pandas.core.index import Index
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.tseries.offsets import DateOffset
other = lib.item_from_zerodim(other)
if isinstance(other, ABCSeries):
return NotImplemented
elif is_timedelta64_dtype(other):
return self._add_delta(-other)
elif isinstance(other, (DateOffset, timedelta)):
return self._add_delta(-other)
elif is_offsetlike(other):
# Array/Index of DateOffset objects
return self._sub_offset_array(other)
elif isinstance(self, TimedeltaIndex) and isinstance(other, Index):
if not isinstance(other, TimedeltaIndex):
raise TypeError("cannot subtract TimedeltaIndex and {typ}"
.format(typ=type(other).__name__))
return self._add_delta(-other)
elif isinstance(other, DatetimeIndex):
return self._sub_datelike(other)
elif is_integer(other):
return self.shift(-other)
elif isinstance(other, (datetime, np.datetime64)):
return self._sub_datelike(other)
elif isinstance(other, Period):
return self._sub_period(other)
elif isinstance(other, Index):
raise TypeError("cannot subtract {typ1} and {typ2}"
.format(typ1=type(self).__name__,
typ2=type(other).__name__))
else: # pragma: no cover
return NotImplemented
cls.__sub__ = __sub__
def __rsub__(self, other):
return -(self - other)
cls.__rsub__ = __rsub__
cls.__iadd__ = __add__
cls.__isub__ = __sub__
def _add_delta(self, other):
return NotImplemented
def _add_delta_td(self, other):
"""
Add a delta of a timedeltalike
return the i8 result view
"""
inc = delta_to_nanoseconds(other)
new_values = checked_add_with_arr(self.asi8, inc,
arr_mask=self._isnan).view('i8')
if self.hasnans:
new_values[self._isnan] = iNaT
return new_values.view('i8')
def _add_delta_tdi(self, other):
"""
Add a delta of a TimedeltaIndex
return the i8 result view
"""
# delta operation
if not len(self) == len(other):
raise ValueError("cannot add indices of unequal length")
self_i8 = self.asi8
other_i8 = other.asi8
new_values = checked_add_with_arr(self_i8, other_i8,
arr_mask=self._isnan,
b_mask=other._isnan)
if self.hasnans or other.hasnans:
mask = (self._isnan) | (other._isnan)
new_values[mask] = iNaT
return new_values.view('i8')
def isin(self, values):
"""
Compute boolean array of whether each index value is found in the
passed set of values
Parameters
----------
values : set or sequence of values
Returns
-------
is_contained : ndarray (boolean dtype)
"""
if not isinstance(values, type(self)):
try:
values = type(self)(values)
except ValueError:
return self.astype(object).isin(values)
return algorithms.isin(self.asi8, values.asi8)
def shift(self, n, freq=None):
"""
Specialized shift which produces a DatetimeIndex
Parameters
----------
n : int
Periods to shift by
freq : DateOffset or timedelta-like, optional
Returns
-------
shifted : DatetimeIndex
"""
if freq is not None and freq != self.freq:
if isinstance(freq, compat.string_types):
freq = frequencies.to_offset(freq)
offset = n * freq
result = self + offset
if hasattr(self, 'tz'):
result.tz = self.tz
return result
if n == 0:
# immutable so OK
return self
if self.freq is None:
raise ValueError("Cannot shift with no freq")
start = self[0] + n * self.freq
end = self[-1] + n * self.freq
attribs = self._get_attributes_dict()
attribs['start'] = start
attribs['end'] = end
return type(self)(**attribs)
def repeat(self, repeats, *args, **kwargs):
"""
Analogous to ndarray.repeat
"""
nv.validate_repeat(args, kwargs)
if isinstance(self, ABCPeriodIndex):
freq = self.freq
else:
freq = None
return self._shallow_copy(self.asi8.repeat(repeats),
freq=freq)
@Appender(_index_shared_docs['where'] % _index_doc_kwargs)
def where(self, cond, other=None):
other = _ensure_datetimelike_to_i8(other)
values = _ensure_datetimelike_to_i8(self)
result = np.where(cond, values, other).astype('i8')
result = self._ensure_localized(result)
return self._shallow_copy(result,
**self._get_attributes_dict())
def summary(self, name=None):
"""
return a summarized representation
"""
formatter = self._formatter_func
if len(self) > 0:
index_summary = ', %s to %s' % (formatter(self[0]),
formatter(self[-1]))
else:
index_summary = ''
if name is None:
name = type(self).__name__
result = '%s: %s entries%s' % (printing.pprint_thing(name),
len(self), index_summary)
if self.freq:
result += '\nFreq: %s' % self.freqstr
# display as values, not quoted
result = result.replace("'", "")
return result
def _concat_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class
"""
attribs = self._get_attributes_dict()
attribs['name'] = name
if not isinstance(self, ABCPeriodIndex):
# reset freq
attribs['freq'] = None
if getattr(self, 'tz', None) is not None:
return _concat._concat_datetimetz(to_concat, name)
else:
new_data = np.concatenate([c.asi8 for c in to_concat])
return self._simple_new(new_data, **attribs)
def astype(self, dtype, copy=True):
if is_object_dtype(dtype):
return self._box_values_as_index()
elif is_string_dtype(dtype) and not is_categorical_dtype(dtype):
return Index(self.format(), name=self.name, dtype=object)
elif is_integer_dtype(dtype):
return Index(self.values.astype('i8', copy=copy), name=self.name,
dtype='i8')
elif (is_datetime_or_timedelta_dtype(dtype) and
not is_dtype_equal(self.dtype, dtype)) or is_float_dtype(dtype):
# disallow conversion between datetime/timedelta,
# and conversions for any datetimelike to float
msg = 'Cannot cast {name} to dtype {dtype}'
raise TypeError(msg.format(name=type(self).__name__, dtype=dtype))
return super(DatetimeIndexOpsMixin, self).astype(dtype, copy=copy)
def _ensure_datetimelike_to_i8(other):
""" helper for coercing an input scalar or array to i8 """
if is_scalar(other) and isna(other):
other = iNaT
elif isinstance(other, ABCIndexClass):
# convert tz if needed
if getattr(other, 'tz', None) is not None:
other = other.tz_localize(None).asi8
else:
other = other.asi8
else:
try:
other = np.array(other, copy=False).view('i8')
except TypeError:
# period array cannot be coerces to int
other = Index(other).asi8
return other