forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatetimelike.py
662 lines (541 loc) · 21.8 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# -*- coding: utf-8 -*-
"""
Base and utility classes for tseries type pandas objects.
"""
import operator
import warnings
import numpy as np
from pandas._libs import NaT, iNaT, lib
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import Appender, cache_readonly
from pandas.core.dtypes.common import (
ensure_int64, is_bool_dtype, is_categorical_dtype,
is_datetime_or_timedelta_dtype, is_dtype_equal, is_float, is_float_dtype,
is_integer, is_integer_dtype, is_list_like, is_object_dtype,
is_period_dtype, is_scalar, is_string_dtype)
from pandas.core.dtypes.generic import ABCIndex, ABCIndexClass, ABCSeries
from pandas.core import algorithms, ops
from pandas.core.accessor import PandasDelegate
from pandas.core.arrays.datetimelike import (
DatetimeLikeArrayMixin, _ensure_datetimelike_to_i8)
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core.tools.timedeltas import to_timedelta
import pandas.io.formats.printing as printing
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
class DatetimeIndexOpsMixin(DatetimeLikeArrayMixin):
"""
common ops mixin to support a unified interface datetimelike Index
"""
# override DatetimeLikeArrayMixin method
copy = Index.copy
# DatetimeLikeArrayMixin assumes subclasses are mutable, so these are
# properties there. They can be made into cache_readonly for Index
# subclasses bc they are immutable
inferred_freq = cache_readonly(DatetimeLikeArrayMixin.inferred_freq.fget)
_isnan = cache_readonly(DatetimeLikeArrayMixin._isnan.fget)
hasnans = cache_readonly(DatetimeLikeArrayMixin._hasnans.fget)
_hasnans = hasnans # for index / array -agnostic code
_resolution = cache_readonly(DatetimeLikeArrayMixin._resolution.fget)
resolution = cache_readonly(DatetimeLikeArrayMixin.resolution.fget)
def unique(self, level=None):
if level is not None:
self._validate_index_level(level)
result = self._eadata.unique()
# Note: if `self` is already unique, then self.unique() should share
# a `freq` with self. If not already unique, then self.freq must be
# None, so again sharing freq is correct.
return self._shallow_copy(result._data)
@classmethod
def _create_comparison_method(cls, op):
"""
Create a comparison method that dispatches to ``cls.values``.
"""
def wrapper(self, other):
result = op(self._eadata, maybe_unwrap_index(other))
return result
wrapper.__doc__ = op.__doc__
wrapper.__name__ = '__{}__'.format(op.__name__)
return wrapper
# A few methods that are shared
_maybe_mask_results = DatetimeLikeArrayMixin._maybe_mask_results
# ------------------------------------------------------------------------
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
if not isinstance(other, ABCIndexClass):
return False
elif not isinstance(other, type(self)):
try:
other = type(self)(other)
except Exception:
return False
if not is_dtype_equal(self.dtype, other.dtype):
# have different timezone
return False
elif is_period_dtype(self):
if not is_period_dtype(other):
return False
if self.freq != other.freq:
return False
return np.array_equal(self.asi8, other.asi8)
@staticmethod
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
"""
Create the join wrapper methods.
"""
@staticmethod
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries)):
left = left.view('i8')
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries)):
right = right.view('i8')
results = joinf(left, right)
if with_indexers:
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
@Appender(DatetimeLikeArrayMixin._evaluate_compare.__doc__)
def _evaluate_compare(self, other, op):
result = self._eadata._evaluate_compare(other, op)
if is_bool_dtype(result):
return result
try:
return Index(result)
except TypeError:
return result
def _ensure_localized(self, arg, ambiguous='raise', nonexistent='raise',
from_utc=False):
# See DatetimeLikeArrayMixin._ensure_localized.__doc__
if getattr(self, 'tz', None):
# ensure_localized is only relevant for tz-aware DTI
from pandas.core.arrays import DatetimeArrayMixin as DatetimeArray
dtarr = DatetimeArray(self)
result = dtarr._ensure_localized(arg,
ambiguous=ambiguous,
nonexistent=nonexistent,
from_utc=from_utc)
return type(self)(result, name=self.name)
return arg
def _box_values_as_index(self):
"""
Return object Index which contains boxed values.
"""
from pandas.core.index import Index
return Index(self._box_values(self.asi8), name=self.name, dtype=object)
@Appender(_index_shared_docs['contains'] % _index_doc_kwargs)
def __contains__(self, key):
try:
res = self.get_loc(key)
return (is_scalar(res) or isinstance(res, slice) or
(is_list_like(res) and len(res)))
except (KeyError, TypeError, ValueError):
return False
contains = __contains__
# Try to run function on index first, and then on elements of index
# Especially important for group-by functionality
def map(self, f):
try:
result = f(self)
# Try to use this result if we can
if isinstance(result, np.ndarray):
result = Index(result)
if not isinstance(result, Index):
raise TypeError('The map function must return an Index object')
return result
except Exception:
return self.astype(object).map(f)
def sort_values(self, return_indexer=False, ascending=True):
"""
Return sorted copy of Index.
"""
if return_indexer:
_as = self.argsort()
if not ascending:
_as = _as[::-1]
sorted_index = self.take(_as)
return sorted_index, _as
else:
sorted_values = np.sort(self._ndarray_values)
attribs = self._get_attributes_dict()
freq = attribs['freq']
if freq is not None and not is_period_dtype(self):
if freq.n > 0 and not ascending:
freq = freq * -1
elif freq.n < 0 and ascending:
freq = freq * -1
attribs['freq'] = freq
if not ascending:
sorted_values = sorted_values[::-1]
sorted_values = self._maybe_box_as_values(sorted_values,
**attribs)
return self._simple_new(sorted_values, **attribs)
@Appender(_index_shared_docs['take'] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = ensure_int64(indices)
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
if isinstance(maybe_slice, slice):
return self[maybe_slice]
taken = self._assert_take_fillable(self.asi8, indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=iNaT)
# keep freq in PeriodArray/Index, reset otherwise
freq = self.freq if is_period_dtype(self) else None
return self._shallow_copy(taken, freq=freq)
_can_hold_na = True
_na_value = NaT
"""The expected NA value to use with this index."""
@property
def asobject(self):
"""
Return object Index which contains boxed values.
.. deprecated:: 0.23.0
Use ``astype(object)`` instead.
*this is an internal non-public method*
"""
warnings.warn("'asobject' is deprecated. Use 'astype(object)'"
" instead", FutureWarning, stacklevel=2)
return self.astype(object)
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(to_timedelta(tolerance, box=False))
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError('list-like tolerance size must match '
'target index size')
return tolerance
def tolist(self):
"""
Return a list of the underlying data.
"""
return list(self.astype(object))
def min(self, axis=None, *args, **kwargs):
"""
Return the minimum value of the Index or minimum along
an axis.
See Also
--------
numpy.ndarray.min
"""
nv.validate_min(args, kwargs)
nv.validate_minmax_axis(axis)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[0] != iNaT:
return self._box_func(i8[0])
if self.hasnans:
min_stamp = self[~self._isnan].asi8.min()
else:
min_stamp = i8.min()
return self._box_func(min_stamp)
except ValueError:
return self._na_value
def argmin(self, axis=None, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmin
"""
nv.validate_argmin(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = np.iinfo('int64').max
return i8.argmin()
def max(self, axis=None, *args, **kwargs):
"""
Return the maximum value of the Index or maximum along
an axis.
See Also
--------
numpy.ndarray.max
"""
nv.validate_max(args, kwargs)
nv.validate_minmax_axis(axis)
try:
i8 = self.asi8
# quick check
if len(i8) and self.is_monotonic:
if i8[-1] != iNaT:
return self._box_func(i8[-1])
if self.hasnans:
max_stamp = self[~self._isnan].asi8.max()
else:
max_stamp = i8.max()
return self._box_func(max_stamp)
except ValueError:
return self._na_value
def argmax(self, axis=None, *args, **kwargs):
"""
Returns the indices of the maximum values along an axis.
See `numpy.ndarray.argmax` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmax
"""
nv.validate_argmax(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all():
return -1
i8 = i8.copy()
i8[mask] = 0
return i8.argmax()
# --------------------------------------------------------------------
# Rendering Methods
def _format_with_header(self, header, **kwargs):
return header + list(self._format_native_types(**kwargs))
@property
def _formatter_func(self):
raise AbstractMethodError(self)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value).
"""
attrs = super(DatetimeIndexOpsMixin, self)._format_attrs()
for attrib in self._attributes:
if attrib == 'freq':
freq = self.freqstr
if freq is not None:
freq = "'%s'" % freq
attrs.append(('freq', freq))
return attrs
# --------------------------------------------------------------------
def _convert_scalar_indexer(self, key, kind=None):
"""
We don't allow integer or float indexing on datetime-like when using
loc.
Parameters
----------
key : label of the slice bound
kind : {'ix', 'loc', 'getitem', 'iloc'} or None
"""
assert kind in ['ix', 'loc', 'getitem', 'iloc', None]
# we don't allow integer/float indexing for loc
# we don't allow float indexing for ix/getitem
if is_scalar(key):
is_int = is_integer(key)
is_flt = is_float(key)
if kind in ['loc'] and (is_int or is_flt):
self._invalid_indexer('index', key)
elif kind in ['ix', 'getitem'] and is_flt:
self._invalid_indexer('index', key)
return (super(DatetimeIndexOpsMixin, self)
._convert_scalar_indexer(key, kind=kind))
@classmethod
def _add_datetimelike_methods(cls):
"""
Add in the datetimelike methods (as we may have to override the
superclass).
"""
def __add__(self, other):
# dispatch to ExtensionArray implementation
result = self._eadata.__add__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__add__ = __add__
def __radd__(self, other):
# alias for __add__
return self.__add__(other)
cls.__radd__ = __radd__
def __sub__(self, other):
# dispatch to ExtensionArray implementation
result = self._eadata.__sub__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__sub__ = __sub__
def __rsub__(self, other):
result = self._eadata.__rsub__(maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
cls.__rsub__ = __rsub__
def isin(self, values):
"""
Compute boolean array of whether each index value is found in the
passed set of values.
Parameters
----------
values : set or sequence of values
Returns
-------
is_contained : ndarray (boolean dtype)
"""
if not isinstance(values, type(self)):
try:
values = type(self)(values)
except ValueError:
return self.astype(object).isin(values)
return algorithms.isin(self.asi8, values.asi8)
@Appender(_index_shared_docs['repeat'] % _index_doc_kwargs)
def repeat(self, repeats, axis=None):
nv.validate_repeat(tuple(), dict(axis=axis))
freq = self.freq if is_period_dtype(self) else None
return self._shallow_copy(self.asi8.repeat(repeats), freq=freq)
# TODO: dispatch to _eadata
@Appender(_index_shared_docs['where'] % _index_doc_kwargs)
def where(self, cond, other=None):
other = _ensure_datetimelike_to_i8(other, to_utc=True)
values = _ensure_datetimelike_to_i8(self, to_utc=True)
result = np.where(cond, values, other).astype('i8')
result = self._ensure_localized(result, from_utc=True)
return self._shallow_copy(result)
def _summary(self, name=None):
"""
Return a summarized representation.
Parameters
----------
name : str
name to use in the summary representation
Returns
-------
String with a summarized representation of the index
"""
formatter = self._formatter_func
if len(self) > 0:
index_summary = ', %s to %s' % (formatter(self[0]),
formatter(self[-1]))
else:
index_summary = ''
if name is None:
name = type(self).__name__
result = '%s: %s entries%s' % (printing.pprint_thing(name),
len(self), index_summary)
if self.freq:
result += '\nFreq: %s' % self.freqstr
# display as values, not quoted
result = result.replace("'", "")
return result
def _concat_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class.
"""
attribs = self._get_attributes_dict()
attribs['name'] = name
# do not pass tz to set because tzlocal cannot be hashed
if len({str(x.dtype) for x in to_concat}) != 1:
raise ValueError('to_concat must have the same tz')
if not is_period_dtype(self):
# reset freq
attribs['freq'] = None
# TODO(DatetimeArray)
# - remove the .asi8 here
# - remove the _maybe_box_as_values
# - combine with the `else` block
new_data = self._concat_same_type(to_concat).asi8
else:
new_data = type(self._values)._concat_same_type(to_concat)
return self._simple_new(new_data, **attribs)
def _maybe_box_as_values(self, values, **attribs):
# TODO(DatetimeArray): remove
# This is a temporary shim while PeriodArray is an ExtensoinArray,
# but others are not. When everyone is an ExtensionArray, this can
# be removed. Currently used in
# - sort_values
return values
def astype(self, dtype, copy=True):
if is_object_dtype(dtype):
return self._box_values_as_index()
elif is_string_dtype(dtype) and not is_categorical_dtype(dtype):
return Index(self.format(), name=self.name, dtype=object)
elif is_integer_dtype(dtype):
# TODO(DatetimeArray): use self._values here.
# Can't use ._values currently, because that returns a
# DatetimeIndex, which throws us in an infinite loop.
return Index(self.values.astype('i8', copy=copy), name=self.name,
dtype='i8')
elif (is_datetime_or_timedelta_dtype(dtype) and
not is_dtype_equal(self.dtype, dtype)) or is_float_dtype(dtype):
# disallow conversion between datetime/timedelta,
# and conversions for any datetimelike to float
msg = 'Cannot cast {name} to dtype {dtype}'
raise TypeError(msg.format(name=type(self).__name__, dtype=dtype))
return super(DatetimeIndexOpsMixin, self).astype(dtype, copy=copy)
@Appender(DatetimeLikeArrayMixin._time_shift.__doc__)
def _time_shift(self, periods, freq=None):
result = self._eadata._time_shift(periods, freq=freq)
return type(self)(result, name=self.name)
def wrap_arithmetic_op(self, other, result):
if result is NotImplemented:
return NotImplemented
if isinstance(result, tuple):
# divmod, rdivmod
assert len(result) == 2
return (wrap_arithmetic_op(self, other, result[0]),
wrap_arithmetic_op(self, other, result[1]))
if not isinstance(result, Index):
# Index.__new__ will choose appropriate subclass for dtype
result = Index(result)
res_name = ops.get_op_result_name(self, other)
result.name = res_name
return result
def maybe_unwrap_index(obj):
"""
If operating against another Index object, we need to unwrap the underlying
data before deferring to the DatetimeArray/TimedeltaArray/PeriodArray
implementation, otherwise we will incorrectly return NotImplemented.
Parameters
----------
obj : object
Returns
-------
unwrapped object
"""
if isinstance(obj, ABCIndexClass):
if isinstance(obj, DatetimeIndexOpsMixin):
# i.e. PeriodIndex/DatetimeIndex/TimedeltaIndex
return obj._eadata
return obj._data
return obj
class DatetimelikeDelegateMixin(PandasDelegate):
"""
Delegation mechanism, specific for Datetime, Timedelta, and Period types.
Functionality is delegated from the Index class to an Array class. A
few things can be customized
* _delegate_class : type
The class being delegated to.
* _delegated_methods, delegated_properties : List
The list of property / method names being delagated.
* raw_methods : Set
The set of methods whose results should should *not* be
boxed in an index, after being returned from the array
* raw_properties : Set
The set of properties whose results should should *not* be
boxed in an index, after being returned from the array
"""
# raw_methods : dispatch methods that shouldn't be boxed in an Index
_raw_methods = set()
# raw_properties : dispatch properties that shouldn't be boxed in an Index
_raw_properties = set()
name = None
_data = None
@property
def _delegate_class(self):
raise AbstractMethodError
def _delegate_property_get(self, name, *args, **kwargs):
result = getattr(self._eadata, name)
if name not in self._raw_properties:
result = Index(result, name=self.name)
return result
def _delegate_property_set(self, name, value, *args, **kwargs):
setattr(self._eadata, name, value)
def _delegate_method(self, name, *args, **kwargs):
result = operator.methodcaller(name, *args, **kwargs)(self._eadata)
if name not in self._raw_methods:
result = Index(result, name=self.name)
return result