forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathewm.py
578 lines (499 loc) · 19 KB
/
ewm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import datetime
from functools import partial
from textwrap import dedent
from typing import TYPE_CHECKING, Optional, Union
import numpy as np
from pandas._libs.tslibs import Timedelta
import pandas._libs.window.aggregations as window_aggregations
from pandas._typing import FrameOrSeries, TimedeltaConvertibleTypes
from pandas.compat.numpy import function as nv
from pandas.util._decorators import Appender, Substitution, doc
from pandas.core.dtypes.common import is_datetime64_ns_dtype
from pandas.core.dtypes.missing import isna
import pandas.core.common as common
from pandas.core.util.numba_ import maybe_use_numba
from pandas.core.window.common import (
_doc_template,
_shared_docs,
flex_binary_moment,
zsqrt,
)
from pandas.core.window.indexers import (
BaseIndexer,
ExponentialMovingWindowIndexer,
GroupbyIndexer,
)
from pandas.core.window.numba_ import generate_numba_groupby_ewma_func
from pandas.core.window.rolling import BaseWindow, BaseWindowGroupby, dispatch
if TYPE_CHECKING:
from pandas import Series
_bias_template = """
Parameters
----------
bias : bool, default False
Use a standard estimation bias correction.
*args, **kwargs
Arguments and keyword arguments to be passed into func.
"""
def get_center_of_mass(
comass: Optional[float],
span: Optional[float],
halflife: Optional[float],
alpha: Optional[float],
) -> float:
valid_count = common.count_not_none(comass, span, halflife, alpha)
if valid_count > 1:
raise ValueError("comass, span, halflife, and alpha are mutually exclusive")
# Convert to center of mass; domain checks ensure 0 < alpha <= 1
if comass is not None:
if comass < 0:
raise ValueError("comass must satisfy: comass >= 0")
elif span is not None:
if span < 1:
raise ValueError("span must satisfy: span >= 1")
comass = (span - 1) / 2.0
elif halflife is not None:
if halflife <= 0:
raise ValueError("halflife must satisfy: halflife > 0")
decay = 1 - np.exp(np.log(0.5) / halflife)
comass = 1 / decay - 1
elif alpha is not None:
if alpha <= 0 or alpha > 1:
raise ValueError("alpha must satisfy: 0 < alpha <= 1")
comass = (1.0 - alpha) / alpha
else:
raise ValueError("Must pass one of comass, span, halflife, or alpha")
return float(comass)
def wrap_result(obj: "Series", result: np.ndarray) -> "Series":
"""
Wrap a single 1D result.
"""
obj = obj._selected_obj
return obj._constructor(result, obj.index, name=obj.name)
class ExponentialMovingWindow(BaseWindow):
r"""
Provide exponential weighted (EW) functions.
Available EW functions: ``mean()``, ``var()``, ``std()``, ``corr()``, ``cov()``.
Exactly one parameter: ``com``, ``span``, ``halflife``, or ``alpha`` must be
provided.
Parameters
----------
com : float, optional
Specify decay in terms of center of mass,
:math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.
span : float, optional
Specify decay in terms of span,
:math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.
halflife : float, str, timedelta, optional
Specify decay in terms of half-life,
:math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
:math:`halflife > 0`.
If ``times`` is specified, the time unit (str or timedelta) over which an
observation decays to half its value. Only applicable to ``mean()``
and halflife value will not apply to the other functions.
.. versionadded:: 1.1.0
alpha : float, optional
Specify smoothing factor :math:`\alpha` directly,
:math:`0 < \alpha \leq 1`.
min_periods : int, default 0
Minimum number of observations in window required to have a value
(otherwise result is NA).
adjust : bool, default True
Divide by decaying adjustment factor in beginning periods to account
for imbalance in relative weightings (viewing EWMA as a moving average).
- When ``adjust=True`` (default), the EW function is calculated using weights
:math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
[:math:`x_0, x_1, ..., x_t`] would be:
.. math::
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
\alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}
- When ``adjust=False``, the exponentially weighted function is calculated
recursively:
.. math::
\begin{split}
y_0 &= x_0\\
y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
\end{split}
ignore_na : bool, default False
Ignore missing values when calculating weights; specify ``True`` to reproduce
pre-0.15.0 behavior.
- When ``ignore_na=False`` (default), weights are based on absolute positions.
For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
:math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
:math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.
- When ``ignore_na=True`` (reproducing pre-0.15.0 behavior), weights are based
on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
used in calculating the final weighted average of
[:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.
axis : {0, 1}, default 0
The axis to use. The value 0 identifies the rows, and 1
identifies the columns.
times : str, np.ndarray, Series, default None
.. versionadded:: 1.1.0
Times corresponding to the observations. Must be monotonically increasing and
``datetime64[ns]`` dtype.
If str, the name of the column in the DataFrame representing the times.
If 1-D array like, a sequence with the same shape as the observations.
Only applicable to ``mean()``.
Returns
-------
DataFrame
A Window sub-classed for the particular operation.
See Also
--------
rolling : Provides rolling window calculations.
expanding : Provides expanding transformations.
Notes
-----
More details can be found at:
:ref:`Exponentially weighted windows <window.exponentially_weighted>`.
Examples
--------
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
>>> df.ewm(com=0.5).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
Specifying ``times`` with a timedelta ``halflife`` when computing mean.
>>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
>>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
B
0 0.000000
1 0.585786
2 1.523889
3 1.523889
4 3.233686
"""
_attributes = ["com", "min_periods", "adjust", "ignore_na", "axis"]
def __init__(
self,
obj,
com: Optional[float] = None,
span: Optional[float] = None,
halflife: Optional[Union[float, TimedeltaConvertibleTypes]] = None,
alpha: Optional[float] = None,
min_periods: int = 0,
adjust: bool = True,
ignore_na: bool = False,
axis: int = 0,
times: Optional[Union[str, np.ndarray, FrameOrSeries]] = None,
**kwargs,
):
self.obj = obj
self.min_periods = max(int(min_periods), 1)
self.adjust = adjust
self.ignore_na = ignore_na
self.axis = axis
self.on = None
self.center = False
self.closed = None
if times is not None:
if isinstance(times, str):
times = self._selected_obj[times]
if not is_datetime64_ns_dtype(times):
raise ValueError("times must be datetime64[ns] dtype.")
if len(times) != len(obj):
raise ValueError("times must be the same length as the object.")
if not isinstance(halflife, (str, datetime.timedelta)):
raise ValueError(
"halflife must be a string or datetime.timedelta object"
)
if isna(times).any():
raise ValueError("Cannot convert NaT values to integer")
self.times = np.asarray(times.view(np.int64))
self.halflife = Timedelta(halflife).value
# Halflife is no longer applicable when calculating COM
# But allow COM to still be calculated if the user passes other decay args
if common.count_not_none(com, span, alpha) > 0:
self.com = get_center_of_mass(com, span, None, alpha)
else:
self.com = 0.0
else:
if halflife is not None and isinstance(halflife, (str, datetime.timedelta)):
raise ValueError(
"halflife can only be a timedelta convertible argument if "
"times is not None."
)
self.times = None
self.halflife = None
self.com = get_center_of_mass(com, span, halflife, alpha)
@property
def _constructor(self):
return ExponentialMovingWindow
def _get_window_indexer(self) -> BaseIndexer:
"""
Return an indexer class that will compute the window start and end bounds
"""
return ExponentialMovingWindowIndexer()
_agg_see_also_doc = dedent(
"""
See Also
--------
pandas.DataFrame.rolling.aggregate
"""
)
_agg_examples_doc = dedent(
"""
Examples
--------
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> df.ewm(alpha=0.5).mean()
A B C
0 1.000000 4.000000 7.000000
1 1.666667 4.666667 7.666667
2 2.428571 5.428571 8.428571
"""
)
@doc(
_shared_docs["aggregate"],
see_also=_agg_see_also_doc,
examples=_agg_examples_doc,
klass="Series/Dataframe",
axis="",
)
def aggregate(self, func, *args, **kwargs):
return super().aggregate(func, *args, **kwargs)
agg = aggregate
@Substitution(name="ewm", func_name="mean")
@Appender(_doc_template)
def mean(self, *args, **kwargs):
"""
Exponential weighted moving average.
Parameters
----------
*args, **kwargs
Arguments and keyword arguments to be passed into func.
"""
nv.validate_window_func("mean", args, kwargs)
if self.times is not None:
window_func = self._get_roll_func("ewma_time")
window_func = partial(
window_func,
times=self.times,
halflife=self.halflife,
)
else:
window_func = self._get_roll_func("ewma")
window_func = partial(
window_func,
com=self.com,
adjust=self.adjust,
ignore_na=self.ignore_na,
)
return self._apply(window_func)
@Substitution(name="ewm", func_name="std")
@Appender(_doc_template)
@Appender(_bias_template)
def std(self, bias: bool = False, *args, **kwargs):
"""
Exponential weighted moving stddev.
"""
nv.validate_window_func("std", args, kwargs)
return zsqrt(self.var(bias=bias, **kwargs))
vol = std
@Substitution(name="ewm", func_name="var")
@Appender(_doc_template)
@Appender(_bias_template)
def var(self, bias: bool = False, *args, **kwargs):
"""
Exponential weighted moving variance.
"""
nv.validate_window_func("var", args, kwargs)
window_func = self._get_roll_func("ewmcov")
window_func = partial(
window_func,
com=self.com,
adjust=self.adjust,
ignore_na=self.ignore_na,
bias=bias,
)
def var_func(values, begin, end, min_periods):
return window_func(values, begin, end, min_periods, values)
return self._apply(var_func)
@Substitution(name="ewm", func_name="cov")
@Appender(_doc_template)
def cov(
self,
other: Optional[Union[np.ndarray, FrameOrSeries]] = None,
pairwise: Optional[bool] = None,
bias: bool = False,
**kwargs,
):
"""
Exponential weighted sample covariance.
Parameters
----------
other : Series, DataFrame, or ndarray, optional
If not supplied then will default to self and produce pairwise
output.
pairwise : bool, default None
If False then only matching columns between self and other will be
used and the output will be a DataFrame.
If True then all pairwise combinations will be calculated and the
output will be a MultiIndex DataFrame in the case of DataFrame
inputs. In the case of missing elements, only complete pairwise
observations will be used.
bias : bool, default False
Use a standard estimation bias correction.
**kwargs
Keyword arguments to be passed into func.
"""
if other is None:
other = self._selected_obj
# only default unset
pairwise = True if pairwise is None else pairwise
other = self._shallow_copy(other)
def _get_cov(X, Y):
X = self._shallow_copy(X)
Y = self._shallow_copy(Y)
cov = window_aggregations.ewmcov(
X._prep_values(),
np.array([0], dtype=np.int64),
np.array([0], dtype=np.int64),
self.min_periods,
Y._prep_values(),
self.com,
self.adjust,
self.ignore_na,
bias,
)
return wrap_result(X, cov)
return flex_binary_moment(
self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)
)
@Substitution(name="ewm", func_name="corr")
@Appender(_doc_template)
def corr(
self,
other: Optional[Union[np.ndarray, FrameOrSeries]] = None,
pairwise: Optional[bool] = None,
**kwargs,
):
"""
Exponential weighted sample correlation.
Parameters
----------
other : Series, DataFrame, or ndarray, optional
If not supplied then will default to self and produce pairwise
output.
pairwise : bool, default None
If False then only matching columns between self and other will be
used and the output will be a DataFrame.
If True then all pairwise combinations will be calculated and the
output will be a MultiIndex DataFrame in the case of DataFrame
inputs. In the case of missing elements, only complete pairwise
observations will be used.
**kwargs
Keyword arguments to be passed into func.
"""
if other is None:
other = self._selected_obj
# only default unset
pairwise = True if pairwise is None else pairwise
other = self._shallow_copy(other)
def _get_corr(X, Y):
X = self._shallow_copy(X)
Y = self._shallow_copy(Y)
def _cov(x, y):
return window_aggregations.ewmcov(
x,
np.array([0], dtype=np.int64),
np.array([0], dtype=np.int64),
self.min_periods,
y,
self.com,
self.adjust,
self.ignore_na,
1,
)
x_values = X._prep_values()
y_values = Y._prep_values()
with np.errstate(all="ignore"):
cov = _cov(x_values, y_values)
x_var = _cov(x_values, x_values)
y_var = _cov(y_values, y_values)
corr = cov / zsqrt(x_var * y_var)
return wrap_result(X, corr)
return flex_binary_moment(
self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)
)
class ExponentialMovingWindowGroupby(BaseWindowGroupby, ExponentialMovingWindow):
"""
Provide an exponential moving window groupby implementation.
"""
def _get_window_indexer(self) -> GroupbyIndexer:
"""
Return an indexer class that will compute the window start and end bounds
Returns
-------
GroupbyIndexer
"""
window_indexer = GroupbyIndexer(
groupby_indicies=self._groupby.indices,
window_indexer=ExponentialMovingWindowIndexer,
)
return window_indexer
var = dispatch("var", bias=False)
std = dispatch("std", bias=False)
cov = dispatch("cov", other=None, pairwise=None, bias=False)
corr = dispatch("corr", other=None, pairwise=None)
def mean(self, engine=None, engine_kwargs=None):
"""
Parameters
----------
engine : str, default None
* ``'cython'`` : Runs mean through C-extensions from cython.
* ``'numba'`` : Runs mean through JIT compiled code from numba.
Only available when ``raw`` is set to ``True``.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
.. versionadded:: 1.2.0
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
and ``parallel`` dictionary keys. The values must either be ``True`` or
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
.. versionadded:: 1.2.0
Returns
-------
Series or DataFrame
Return type is determined by the caller.
"""
if maybe_use_numba(engine):
groupby_ewma_func = generate_numba_groupby_ewma_func(
engine_kwargs,
self.com,
self.adjust,
self.ignore_na,
)
return self._apply(
groupby_ewma_func,
numba_cache_key=(lambda x: x, "groupby_ewma"),
)
elif engine in ("cython", None):
if engine_kwargs is not None:
raise ValueError("cython engine does not accept engine_kwargs")
def f(x):
x = self._shallow_copy(x, groupby=self._groupby)
return x.mean()
return self._groupby.apply(f)
else:
raise ValueError("engine must be either 'numba' or 'cython'")