Skip to content

Latest commit

 

History

History
927 lines (607 loc) · 24.6 KB

missing_data.rst

File metadata and controls

927 lines (607 loc) · 24.6 KB

{{ header }}

Working with missing data

In this section, we will discuss missing (also referred to as NA) values in pandas.

Note

The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. Starting from pandas 1.0, some optional data types start experimenting with a native NA scalar using a mask-based approach. See :ref:`here <missing_data.NA>` for more.

See the :ref:`cookbook<cookbook.missing_data>` for some advanced strategies.

Values considered "missing"

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that "missing" or "not available" or "NA".

Note

If you want to consider inf and -inf to be "NA" in computations, you can set pandas.options.mode.use_inf_as_na = True.

.. ipython:: python

   df = pd.DataFrame(
       np.random.randn(5, 3),
       index=["a", "c", "e", "f", "h"],
       columns=["one", "two", "three"],
   )
   df["four"] = "bar"
   df["five"] = df["one"] > 0
   df
   df2 = df.reindex(["a", "b", "c", "d", "e", "f", "g", "h"])
   df2

To make detecting missing values easier (and across different array dtypes), pandas provides the :func:`isna` and :func:`notna` functions, which are also methods on Series and DataFrame objects:

.. ipython:: python

   df2["one"]
   pd.isna(df2["one"])
   df2["four"].notna()
   df2.isna()

Warning

One has to be mindful that in Python (and NumPy), the nan's don't compare equal, but None's do. Note that pandas/NumPy uses the fact that np.nan != np.nan, and treats None like np.nan.

.. ipython:: python

   None == None  # noqa: E711
   np.nan == np.nan

So as compared to above, a scalar equality comparison versus a None/np.nan doesn't provide useful information.

.. ipython:: python

   df2["one"] == np.nan

Integer dtypes and missing data

Because NaN is a float, a column of integers with even one missing values is cast to floating-point dtype (see :ref:`gotchas.intna` for more). pandas provides a nullable integer array, which can be used by explicitly requesting the dtype:

.. ipython:: python

   pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype())

Alternatively, the string alias dtype='Int64' (note the capital "I") can be used.

See :ref:`integer_na` for more.

Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by NumPy in a singular dtype (datetime64[ns]). pandas objects provide compatibility between NaT and NaN.

.. ipython:: python

   df2 = df.copy()
   df2["timestamp"] = pd.Timestamp("20120101")
   df2
   df2.loc[["a", "c", "h"], ["one", "timestamp"]] = np.nan
   df2
   df2.dtypes.value_counts()

Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

.. ipython:: python

   s = pd.Series([1., 2., 3.])
   s.loc[0] = None
   s

Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

.. ipython:: python

   s = pd.Series(["a", "b", "c"])
   s.loc[0] = None
   s.loc[1] = np.nan
   s

Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

.. ipython:: python
   :suppress:

   df = df2.loc[:, ["one", "two", "three"]]
   a = df2.loc[df2.index[:5], ["one", "two"]].fillna(method="pad")
   b = df2.loc[df2.index[:5], ["one", "two", "three"]]

.. ipython:: python

   a
   b
   a + b

The descriptive statistics and computational methods discussed in the :ref:`data structure overview <basics.stats>` (and listed :ref:`here <api.series.stats>` and :ref:`here <api.dataframe.stats>`) are all written to account for missing data. For example:

  • When summing data, NA (missing) values will be treated as zero.
  • If the data are all NA, the result will be 0.
  • Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use skipna=False.
.. ipython:: python

   df
   df["one"].sum()
   df.mean(1)
   df.cumsum()
   df.cumsum(skipna=False)


Sum/prod of empties/nans

The sum of an empty or all-NA Series or column of a DataFrame is 0.

.. ipython:: python

   pd.Series([np.nan]).sum()

   pd.Series([], dtype="float64").sum()

The product of an empty or all-NA Series or column of a DataFrame is 1.

.. ipython:: python

   pd.Series([np.nan]).prod()

   pd.Series([], dtype="float64").prod()


NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example:

.. ipython:: python

    df
    df.groupby("one").mean()

See the groupby section :ref:`here <groupby.missing>` for more information.

Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

Filling missing values: fillna

:meth:`~DataFrame.fillna` can "fill in" NA values with non-NA data in a couple of ways, which we illustrate:

Replace NA with a scalar value

.. ipython:: python

   df2
   df2.fillna(0)
   df2["one"].fillna("missing")

Fill gaps forward or backward

Using the same filling arguments as :ref:`reindexing <basics.reindexing>`, we can propagate non-NA values forward or backward:

.. ipython:: python

   df
   df.fillna(method="pad")

Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:

.. ipython:: python
   :suppress:

   df.iloc[2:4, :] = np.nan

.. ipython:: python

   df
   df.fillna(method="pad", limit=1)

To remind you, these are the available filling methods:

Method Action
pad / ffill Fill values forward
bfill / backfill Fill values backward

With time series data, using pad/ffill is extremely common so that the "last known value" is available at every time point.

:meth:`~DataFrame.ffill` is equivalent to fillna(method='ffill') and :meth:`~DataFrame.bfill` is equivalent to fillna(method='bfill')

Filling with a PandasObject

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

.. ipython:: python

        dff = pd.DataFrame(np.random.randn(10, 3), columns=list("ABC"))
        dff.iloc[3:5, 0] = np.nan
        dff.iloc[4:6, 1] = np.nan
        dff.iloc[5:8, 2] = np.nan
        dff

        dff.fillna(dff.mean())
        dff.fillna(dff.mean()["B":"C"])

Same result as above, but is aligning the 'fill' value which is a Series in this case.

.. ipython:: python

        dff.where(pd.notna(dff), dff.mean(), axis="columns")


Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use :meth:`~DataFrame.dropna`:

.. ipython:: python
   :suppress:

   df["two"] = df["two"].fillna(0)
   df["three"] = df["three"].fillna(0)

.. ipython:: python

   df
   df.dropna(axis=0)
   df.dropna(axis=1)
   df["one"].dropna()

An equivalent :meth:`~Series.dropna` is available for Series. DataFrame.dropna has considerably more options than Series.dropna, which can be examined :ref:`in the API <api.dataframe.missing>`.

Interpolation

Both Series and DataFrame objects have :meth:`~DataFrame.interpolate` that, by default, performs linear interpolation at missing data points.

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   idx = pd.date_range("1/1/2000", periods=100, freq="BM")
   ts = pd.Series(np.random.randn(100), index=idx)
   ts[1:5] = np.nan
   ts[20:30] = np.nan
   ts[60:80] = np.nan
   ts = ts.cumsum()

.. ipython:: python

   ts
   ts.count()
   @savefig series_before_interpolate.png
   ts.plot()

.. ipython:: python

   ts.interpolate()
   ts.interpolate().count()

   @savefig series_interpolate.png
   ts.interpolate().plot()

Index aware interpolation is available via the method keyword:

.. ipython:: python
   :suppress:

   ts2 = ts.iloc[[0, 1, 30, 60, 99]]

.. ipython:: python

   ts2
   ts2.interpolate()
   ts2.interpolate(method="time")

For a floating-point index, use method='values':

.. ipython:: python
   :suppress:

   idx = [0.0, 1.0, 10.0]
   ser = pd.Series([0.0, np.nan, 10.0], idx)

.. ipython:: python

   ser
   ser.interpolate()
   ser.interpolate(method="values")

You can also interpolate with a DataFrame:

.. ipython:: python

   df = pd.DataFrame(
       {
           "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
           "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
       }
   )
   df
   df.interpolate()

The method argument gives access to fancier interpolation methods. If you have scipy installed, you can pass the name of a 1-d interpolation routine to method. You'll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with.

  • If you are dealing with a time series that is growing at an increasing rate, method='quadratic' may be appropriate.
  • If you have values approximating a cumulative distribution function, then method='pchip' should work well.
  • To fill missing values with goal of smooth plotting, consider method='akima'.

Warning

These methods require scipy.

.. ipython:: python

   df.interpolate(method="barycentric")

   df.interpolate(method="pchip")

   df.interpolate(method="akima")

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

.. ipython:: python

   df.interpolate(method="spline", order=2)

   df.interpolate(method="polynomial", order=2)

Compare several methods:

.. ipython:: python

   np.random.seed(2)

   ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37))
   missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
   ser.iloc[missing] = np.nan
   methods = ["linear", "quadratic", "cubic"]

   df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
   @savefig compare_interpolations.png
   df.plot()

Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let's suppose that you're particularly interested in what's happening around the middle. You can mix pandas' reindex and interpolate methods to interpolate at the new values.

.. ipython:: python

   ser = pd.Series(np.sort(np.random.uniform(size=100)))

   # interpolate at new_index
   new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]))
   interp_s = ser.reindex(new_index).interpolate(method="pchip")
   interp_s[49:51]

Interpolation limits

Like other pandas fill methods, :meth:`~DataFrame.interpolate` accepts a limit keyword argument. Use this argument to limit the number of consecutive NaN values filled since the last valid observation:

.. ipython:: python

   ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan])
   ser

   # fill all consecutive values in a forward direction
   ser.interpolate()

   # fill one consecutive value in a forward direction
   ser.interpolate(limit=1)

By default, NaN values are filled in a forward direction. Use limit_direction parameter to fill backward or from both directions.

.. ipython:: python

   # fill one consecutive value backwards
   ser.interpolate(limit=1, limit_direction="backward")

   # fill one consecutive value in both directions
   ser.interpolate(limit=1, limit_direction="both")

   # fill all consecutive values in both directions
   ser.interpolate(limit_direction="both")

By default, NaN values are filled whether they are inside (surrounded by) existing valid values, or outside existing valid values. The limit_area parameter restricts filling to either inside or outside values.

.. ipython:: python

   # fill one consecutive inside value in both directions
   ser.interpolate(limit_direction="both", limit_area="inside", limit=1)

   # fill all consecutive outside values backward
   ser.interpolate(limit_direction="backward", limit_area="outside")

   # fill all consecutive outside values in both directions
   ser.interpolate(limit_direction="both", limit_area="outside")

Replacing generic values

Often times we want to replace arbitrary values with other values.

:meth:`~Series.replace` in Series and :meth:`~DataFrame.replace` in DataFrame provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

.. ipython:: python

   ser = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0])

   ser.replace(0, 5)

You can replace a list of values by a list of other values:

.. ipython:: python

   ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])

You can also specify a mapping dict:

.. ipython:: python

   ser.replace({0: 10, 1: 100})

For a DataFrame, you can specify individual values by column:

.. ipython:: python

   df = pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": [5, 6, 7, 8, 9]})

   df.replace({"a": 0, "b": 5}, 100)

String/regular expression replacement

Note

Python strings prefixed with the r character such as r'hello world' are so-called "raw" strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., r'\' == '\\'. You should read about them if this is unclear.

Replace the '.' with NaN (str -> str):

.. ipython:: python

   d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
   df = pd.DataFrame(d)
   df.replace(".", np.nan)

Now do it with a regular expression that removes surrounding whitespace (regex -> regex):

.. ipython:: python

   df.replace(r"\s*\.\s*", np.nan, regex=True)

Replace a few different values (list -> list):

.. ipython:: python

   df.replace(["a", "."], ["b", np.nan])

list of regex -> list of regex:

.. ipython:: python

   df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True)

Only search in column 'b' (dict -> dict):

.. ipython:: python

   df.replace({"b": "."}, {"b": np.nan})

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict):

.. ipython:: python

   df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)

You can pass nested dictionaries of regular expressions that use regex=True:

.. ipython:: python

   df.replace({"b": {"b": r""}}, regex=True)

Alternatively, you can pass the nested dictionary like so:

.. ipython:: python

   df.replace(regex={"b": {r"\s*\.\s*": np.nan}})

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well.

.. ipython:: python

   df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex).

.. ipython:: python

   df.replace([r"\s*\.\s*", r"a|b"], np.nan, regex=True)

All of the regular expression examples can also be passed with the to_replace argument as the regex argument. In this case the value argument must be passed explicitly by name or regex must be a nested dictionary. The previous example, in this case, would then be:

.. ipython:: python

   df.replace(regex=[r"\s*\.\s*", r"a|b"], value=np.nan)

This can be convenient if you do not want to pass regex=True every time you want to use a regular expression.

Note

Anywhere in the above replace examples that you see a regular expression a compiled regular expression is valid as well.

Numeric replacement

:meth:`~DataFrame.replace` is similar to :meth:`~DataFrame.fillna`.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10, 2))
   df[np.random.rand(df.shape[0]) > 0.5] = 1.5
   df.replace(1.5, np.nan)

Replacing more than one value is possible by passing a list.

.. ipython:: python

   df00 = df.iloc[0, 0]
   df.replace([1.5, df00], [np.nan, "a"])
   df[1].dtype

Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we've established some "casting rules". When a reindexing operation introduces missing data, the Series will be cast according to the rules introduced in the table below.

data type Cast to
integer float
boolean object
float no cast
object no cast

For example:

.. ipython:: python

   s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])
   s > 0
   (s > 0).dtype
   crit = (s > 0).reindex(list(range(8)))
   crit
   crit.dtype

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

.. ipython:: python
   :okexcept:

   reindexed = s.reindex(list(range(8))).fillna(0)
   reindexed[crit]

However, these can be filled in using :meth:`~DataFrame.fillna` and it will work fine:

.. ipython:: python

   reindexed[crit.fillna(False)]
   reindexed[crit.fillna(True)]

pandas provides a nullable integer dtype, but you must explicitly request it when creating the series or column. Notice that we use a capital "I" in the dtype="Int64".

.. ipython:: python

   s = pd.Series([0, 1, np.nan, 3, 4], dtype="Int64")
   s

See :ref:`integer_na` for more.

Experimental NA scalar to denote missing values

Warning

Experimental: the behaviour of pd.NA can still change without warning.

Starting from pandas 1.0, an experimental pd.NA value (singleton) is available to represent scalar missing values. At this moment, it is used in the nullable :doc:`integer <integer_na>`, boolean and :ref:`dedicated string <text.types>` data types as the missing value indicator.

The goal of pd.NA is provide a "missing" indicator that can be used consistently across data types (instead of np.nan, None or pd.NaT depending on the data type).

For example, when having missing values in a Series with the nullable integer dtype, it will use pd.NA:

.. ipython:: python

    s = pd.Series([1, 2, None], dtype="Int64")
    s
    s[2]
    s[2] is pd.NA

Currently, pandas does not yet use those data types by default (when creating a DataFrame or Series, or when reading in data), so you need to specify the dtype explicitly. An easy way to convert to those dtypes is explained :ref:`here <missing_data.NA.conversion>`.

Propagation in arithmetic and comparison operations

In general, missing values propagate in operations involving pd.NA. When one of the operands is unknown, the outcome of the operation is also unknown.

For example, pd.NA propagates in arithmetic operations, similarly to np.nan:

.. ipython:: python

   pd.NA + 1
   "a" * pd.NA

There are a few special cases when the result is known, even when one of the operands is NA.

.. ipython:: python

   pd.NA ** 0
   1 ** pd.NA

In equality and comparison operations, pd.NA also propagates. This deviates from the behaviour of np.nan, where comparisons with np.nan always return False.

.. ipython:: python

   pd.NA == 1
   pd.NA == pd.NA
   pd.NA < 2.5

To check if a value is equal to pd.NA, the :func:`isna` function can be used:

.. ipython:: python

   pd.isna(pd.NA)

An exception on this basic propagation rule are reductions (such as the mean or the minimum), where pandas defaults to skipping missing values. See :ref:`above <missing_data.calculations>` for more.

Logical operations

For logical operations, pd.NA follows the rules of the three-valued logic (or Kleene logic, similarly to R, SQL and Julia). This logic means to only propagate missing values when it is logically required.

For example, for the logical "or" operation (|), if one of the operands is True, we already know the result will be True, regardless of the other value (so regardless the missing value would be True or False). In this case, pd.NA does not propagate:

.. ipython:: python

   True | False
   True | pd.NA
   pd.NA | True

On the other hand, if one of the operands is False, the result depends on the value of the other operand. Therefore, in this case pd.NA propagates:

.. ipython:: python

   False | True
   False | False
   False | pd.NA

The behaviour of the logical "and" operation (&) can be derived using similar logic (where now pd.NA will not propagate if one of the operands is already False):

.. ipython:: python

   False & True
   False & False
   False & pd.NA

.. ipython:: python

   True & True
   True & False
   True & pd.NA


NA in a boolean context

Since the actual value of an NA is unknown, it is ambiguous to convert NA to a boolean value. The following raises an error:

.. ipython:: python
   :okexcept:

   bool(pd.NA)

This also means that pd.NA cannot be used in a context where it is evaluated to a boolean, such as if condition: ... where condition can potentially be pd.NA. In such cases, :func:`isna` can be used to check for pd.NA or condition being pd.NA can be avoided, for example by filling missing values beforehand.

A similar situation occurs when using Series or DataFrame objects in if statements, see :ref:`gotchas.truth`.

NumPy ufuncs

:attr:`pandas.NA` implements NumPy's __array_ufunc__ protocol. Most ufuncs work with NA, and generally return NA:

.. ipython:: python

   np.log(pd.NA)
   np.add(pd.NA, 1)

Warning

Currently, ufuncs involving an ndarray and NA will return an object-dtype filled with NA values.

.. ipython:: python

   a = np.array([1, 2, 3])
   np.greater(a, pd.NA)

The return type here may change to return a different array type in the future.

See :ref:`dsintro.numpy_interop` for more on ufuncs.

Conversion

If you have a DataFrame or Series using traditional types that have missing data represented using np.nan, there are convenience methods :meth:`~Series.convert_dtypes` in Series and :meth:`~DataFrame.convert_dtypes` in DataFrame that can convert data to use the newer dtypes for integers, strings and booleans listed :ref:`here <basics.dtypes>`. This is especially helpful after reading in data sets when letting the readers such as :meth:`read_csv` and :meth:`read_excel` infer default dtypes.

In this example, while the dtypes of all columns are changed, we show the results for the first 10 columns.

.. ipython:: python

   bb = pd.read_csv("data/baseball.csv", index_col="id")
   bb[bb.columns[:10]].dtypes

.. ipython:: python

   bbn = bb.convert_dtypes()
   bbn[bbn.columns[:10]].dtypes