forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeneric.py
1589 lines (1319 loc) · 52.5 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Define the SeriesGroupBy and DataFrameGroupBy
classes that hold the groupby interfaces (and some implementations).
These are user facing as the result of the ``df.groupby(...)`` operations,
which here returns a DataFrameGroupBy object.
"""
from __future__ import annotations
from collections import abc
from functools import partial
from textwrap import dedent
from typing import (
Any,
Callable,
Hashable,
Iterable,
Mapping,
NamedTuple,
TypeVar,
Union,
cast,
)
import warnings
import numpy as np
from pandas._libs import reduction as libreduction
from pandas._typing import (
ArrayLike,
Manager,
Manager2D,
SingleManager,
)
from pandas.util._decorators import (
Appender,
Substitution,
doc,
)
from pandas.core.dtypes.common import (
ensure_int64,
is_bool,
is_categorical_dtype,
is_dict_like,
is_integer_dtype,
is_interval_dtype,
is_scalar,
)
from pandas.core.dtypes.missing import (
isna,
notna,
)
from pandas.core import (
algorithms,
nanops,
)
from pandas.core.apply import (
GroupByApply,
maybe_mangle_lambdas,
reconstruct_func,
validate_func_kwargs,
)
from pandas.core.base import SpecificationError
import pandas.core.common as com
from pandas.core.construction import create_series_with_explicit_dtype
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.core.groupby import base
from pandas.core.groupby.groupby import (
GroupBy,
_agg_template,
_apply_docs,
_transform_template,
warn_dropping_nuisance_columns_deprecated,
)
from pandas.core.indexes.api import (
Index,
MultiIndex,
all_indexes_same,
)
from pandas.core.series import Series
from pandas.core.util.numba_ import maybe_use_numba
from pandas.plotting import boxplot_frame_groupby
# TODO(typing) the return value on this callable should be any *scalar*.
AggScalar = Union[str, Callable[..., Any]]
# TODO: validate types on ScalarResult and move to _typing
# Blocked from using by https://github.com/python/mypy/issues/1484
# See note at _mangle_lambda_list
ScalarResult = TypeVar("ScalarResult")
class NamedAgg(NamedTuple):
column: Hashable
aggfunc: AggScalar
def generate_property(name: str, klass: type[DataFrame | Series]):
"""
Create a property for a GroupBy subclass to dispatch to DataFrame/Series.
Parameters
----------
name : str
klass : {DataFrame, Series}
Returns
-------
property
"""
def prop(self):
return self._make_wrapper(name)
parent_method = getattr(klass, name)
prop.__doc__ = parent_method.__doc__ or ""
prop.__name__ = name
return property(prop)
def pin_allowlisted_properties(
klass: type[DataFrame | Series], allowlist: frozenset[str]
):
"""
Create GroupBy member defs for DataFrame/Series names in a allowlist.
Parameters
----------
klass : DataFrame or Series class
class where members are defined.
allowlist : frozenset[str]
Set of names of klass methods to be constructed
Returns
-------
class decorator
Notes
-----
Since we don't want to override methods explicitly defined in the
base class, any such name is skipped.
"""
def pinner(cls):
for name in allowlist:
if hasattr(cls, name):
# don't override anything that was explicitly defined
# in the base class
continue
prop = generate_property(name, klass)
setattr(cls, name, prop)
return cls
return pinner
@pin_allowlisted_properties(Series, base.series_apply_allowlist)
class SeriesGroupBy(GroupBy[Series]):
_apply_allowlist = base.series_apply_allowlist
def _wrap_agged_manager(self, mgr: Manager) -> Series:
if mgr.ndim == 1:
mgr = cast(SingleManager, mgr)
single = mgr
else:
mgr = cast(Manager2D, mgr)
single = mgr.iget(0)
ser = self.obj._constructor(single, name=self.obj.name)
# NB: caller is responsible for setting ser.index
return ser
def _get_data_to_aggregate(self) -> SingleManager:
ser = self._obj_with_exclusions
single = ser._mgr
return single
def _iterate_slices(self) -> Iterable[Series]:
yield self._selected_obj
_agg_examples_doc = dedent(
"""
Examples
--------
>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64
>>> s.groupby([1, 1, 2, 2]).min()
1 1
2 3
dtype: int64
>>> s.groupby([1, 1, 2, 2]).agg('min')
1 1
2 3
dtype: int64
>>> s.groupby([1, 1, 2, 2]).agg(['min', 'max'])
min max
1 1 2
2 3 4
The output column names can be controlled by passing
the desired column names and aggregations as keyword arguments.
>>> s.groupby([1, 1, 2, 2]).agg(
... minimum='min',
... maximum='max',
... )
minimum maximum
1 1 2
2 3 4
.. versionchanged:: 1.3.0
The resulting dtype will reflect the return value of the aggregating function.
>>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min())
1 1.0
2 3.0
dtype: float64
"""
)
@Appender(
_apply_docs["template"].format(
input="series", examples=_apply_docs["series_examples"]
)
)
def apply(self, func, *args, **kwargs):
return super().apply(func, *args, **kwargs)
@doc(_agg_template, examples=_agg_examples_doc, klass="Series")
def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
if maybe_use_numba(engine):
with self._group_selection_context():
data = self._selected_obj
result = self._aggregate_with_numba(
data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs
)
index = self.grouper.result_index
return self.obj._constructor(result.ravel(), index=index, name=data.name)
relabeling = func is None
columns = None
if relabeling:
columns, func = validate_func_kwargs(kwargs)
kwargs = {}
if isinstance(func, str):
return getattr(self, func)(*args, **kwargs)
elif isinstance(func, abc.Iterable):
# Catch instances of lists / tuples
# but not the class list / tuple itself.
func = maybe_mangle_lambdas(func)
ret = self._aggregate_multiple_funcs(func)
if relabeling:
# error: Incompatible types in assignment (expression has type
# "Optional[List[str]]", variable has type "Index")
ret.columns = columns # type: ignore[assignment]
return ret
else:
cyfunc = com.get_cython_func(func)
if cyfunc and not args and not kwargs:
return getattr(self, cyfunc)()
if self.grouper.nkeys > 1:
return self._python_agg_general(func, *args, **kwargs)
try:
return self._python_agg_general(func, *args, **kwargs)
except KeyError:
# TODO: KeyError is raised in _python_agg_general,
# see test_groupby.test_basic
result = self._aggregate_named(func, *args, **kwargs)
index = Index(sorted(result), name=self.grouper.names[0])
return create_series_with_explicit_dtype(
result, index=index, dtype_if_empty=object
)
agg = aggregate
def _aggregate_multiple_funcs(self, arg) -> DataFrame:
if isinstance(arg, dict):
# show the deprecation, but only if we
# have not shown a higher level one
# GH 15931
raise SpecificationError("nested renamer is not supported")
elif any(isinstance(x, (tuple, list)) for x in arg):
arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg]
# indicated column order
columns = next(zip(*arg))
else:
# list of functions / function names
columns = []
for f in arg:
columns.append(com.get_callable_name(f) or f)
arg = zip(columns, arg)
results: dict[base.OutputKey, DataFrame | Series] = {}
for idx, (name, func) in enumerate(arg):
key = base.OutputKey(label=name, position=idx)
results[key] = self.aggregate(func)
if any(isinstance(x, DataFrame) for x in results.values()):
from pandas import concat
res_df = concat(
results.values(), axis=1, keys=[key.label for key in results.keys()]
)
return res_df
indexed_output = {key.position: val for key, val in results.items()}
output = self.obj._constructor_expanddim(indexed_output, index=None)
output.columns = Index(key.label for key in results)
output = self._reindex_output(output)
return output
def _indexed_output_to_ndframe(
self, output: Mapping[base.OutputKey, ArrayLike]
) -> Series:
"""
Wrap the dict result of a GroupBy aggregation into a Series.
"""
assert len(output) == 1
values = next(iter(output.values()))
result = self.obj._constructor(values)
result.name = self.obj.name
return result
def _wrap_applied_output(
self,
data: Series,
values: list[Any],
not_indexed_same: bool = False,
) -> DataFrame | Series:
"""
Wrap the output of SeriesGroupBy.apply into the expected result.
Parameters
----------
data : Series
Input data for groupby operation.
values : List[Any]
Applied output for each group.
not_indexed_same : bool, default False
Whether the applied outputs are not indexed the same as the group axes.
Returns
-------
DataFrame or Series
"""
if len(values) == 0:
# GH #6265
return self.obj._constructor(
[],
name=self.obj.name,
index=self.grouper.result_index,
dtype=data.dtype,
)
assert values is not None
if isinstance(values[0], dict):
# GH #823 #24880
index = self.grouper.result_index
res_df = self.obj._constructor_expanddim(values, index=index)
res_df = self._reindex_output(res_df)
# if self.observed is False,
# keep all-NaN rows created while re-indexing
res_ser = res_df.stack(dropna=self.observed)
res_ser.name = self.obj.name
return res_ser
elif isinstance(values[0], (Series, DataFrame)):
return self._concat_objects(values, not_indexed_same=not_indexed_same)
else:
# GH #6265 #24880
result = self.obj._constructor(
data=values, index=self.grouper.result_index, name=self.obj.name
)
return self._reindex_output(result)
def _aggregate_named(self, func, *args, **kwargs):
# Note: this is very similar to _aggregate_series_pure_python,
# but that does not pin group.name
result = {}
initialized = False
for name, group in self:
object.__setattr__(group, "name", name)
output = func(group, *args, **kwargs)
output = libreduction.extract_result(output)
if not initialized:
# We only do this validation on the first iteration
libreduction.check_result_array(output, group.dtype)
initialized = True
result[name] = output
return result
@Substitution(klass="Series")
@Appender(_transform_template)
def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
return self._transform(
func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
)
def _cython_transform(
self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs
):
assert axis == 0 # handled by caller
obj = self._selected_obj
try:
result = self.grouper._cython_operation(
"transform", obj._values, how, axis, **kwargs
)
except NotImplementedError as err:
raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err
return obj._constructor(result, index=self.obj.index, name=obj.name)
def _transform_general(self, func: Callable, *args, **kwargs) -> Series:
"""
Transform with a callable func`.
"""
assert callable(func)
klass = type(self.obj)
results = []
for name, group in self:
# this setattr is needed for test_transform_lambda_with_datetimetz
object.__setattr__(group, "name", name)
res = func(group, *args, **kwargs)
results.append(klass(res, index=group.index))
# check for empty "results" to avoid concat ValueError
if results:
from pandas.core.reshape.concat import concat
concatenated = concat(results)
result = self._set_result_index_ordered(concatenated)
else:
result = self.obj._constructor(dtype=np.float64)
result.name = self.obj.name
return result
def _can_use_transform_fast(self, result) -> bool:
return True
def filter(self, func, dropna: bool = True, *args, **kwargs):
"""
Return a copy of a Series excluding elements from groups that
do not satisfy the boolean criterion specified by func.
Parameters
----------
func : function
To apply to each group. Should return True or False.
dropna : Drop groups that do not pass the filter. True by default;
if False, groups that evaluate False are filled with NaNs.
Notes
-----
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
Examples
--------
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
... 'foo', 'bar'],
... 'B' : [1, 2, 3, 4, 5, 6],
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
>>> grouped = df.groupby('A')
>>> df.groupby('A').B.filter(lambda x: x.mean() > 3.)
1 2
3 4
5 6
Name: B, dtype: int64
Returns
-------
filtered : Series
"""
if isinstance(func, str):
wrapper = lambda x: getattr(x, func)(*args, **kwargs)
else:
wrapper = lambda x: func(x, *args, **kwargs)
# Interpret np.nan as False.
def true_and_notna(x) -> bool:
b = wrapper(x)
return b and notna(b)
try:
indices = [
self._get_index(name) for name, group in self if true_and_notna(group)
]
except (ValueError, TypeError) as err:
raise TypeError("the filter must return a boolean result") from err
filtered = self._apply_filter(indices, dropna)
return filtered
def nunique(self, dropna: bool = True) -> Series:
"""
Return number of unique elements in the group.
Returns
-------
Series
Number of unique values within each group.
"""
ids, _, _ = self.grouper.group_info
val = self.obj._values
codes, _ = algorithms.factorize(val, sort=False)
sorter = np.lexsort((codes, ids))
codes = codes[sorter]
ids = ids[sorter]
# group boundaries are where group ids change
# unique observations are where sorted values change
idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]]
inc = np.r_[1, codes[1:] != codes[:-1]]
# 1st item of each group is a new unique observation
mask = codes == -1
if dropna:
inc[idx] = 1
inc[mask] = 0
else:
inc[mask & np.r_[False, mask[:-1]]] = 0
inc[idx] = 1
out = np.add.reduceat(inc, idx).astype("int64", copy=False)
if len(ids):
# NaN/NaT group exists if the head of ids is -1,
# so remove it from res and exclude its index from idx
if ids[0] == -1:
res = out[1:]
idx = idx[np.flatnonzero(idx)]
else:
res = out
else:
res = out[1:]
ri = self.grouper.result_index
# we might have duplications among the bins
if len(res) != len(ri):
res, out = np.zeros(len(ri), dtype=out.dtype), res
res[ids[idx]] = out
result = self.obj._constructor(res, index=ri, name=self.obj.name)
return self._reindex_output(result, fill_value=0)
@doc(Series.describe)
def describe(self, **kwargs):
return super().describe(**kwargs)
def value_counts(
self,
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
bins=None,
dropna: bool = True,
):
from pandas.core.reshape.merge import get_join_indexers
from pandas.core.reshape.tile import cut
ids, _, _ = self.grouper.group_info
val = self.obj._values
def apply_series_value_counts():
return self.apply(
Series.value_counts,
normalize=normalize,
sort=sort,
ascending=ascending,
bins=bins,
)
if bins is not None:
if not np.iterable(bins):
# scalar bins cannot be done at top level
# in a backward compatible way
return apply_series_value_counts()
elif is_categorical_dtype(val.dtype):
# GH38672
return apply_series_value_counts()
# groupby removes null keys from groupings
mask = ids != -1
ids, val = ids[mask], val[mask]
if bins is None:
lab, lev = algorithms.factorize(val, sort=True)
llab = lambda lab, inc: lab[inc]
else:
# lab is a Categorical with categories an IntervalIndex
lab = cut(Series(val), bins, include_lowest=True)
# error: "ndarray" has no attribute "cat"
lev = lab.cat.categories # type: ignore[attr-defined]
# error: No overload variant of "take" of "_ArrayOrScalarCommon" matches
# argument types "Any", "bool", "Union[Any, float]"
lab = lev.take( # type: ignore[call-overload]
# error: "ndarray" has no attribute "cat"
lab.cat.codes, # type: ignore[attr-defined]
allow_fill=True,
# error: Item "ndarray" of "Union[ndarray, Index]" has no attribute
# "_na_value"
fill_value=lev._na_value, # type: ignore[union-attr]
)
llab = lambda lab, inc: lab[inc]._multiindex.codes[-1]
if is_interval_dtype(lab.dtype):
# TODO: should we do this inside II?
# error: "ndarray" has no attribute "left"
# error: "ndarray" has no attribute "right"
sorter = np.lexsort(
(lab.left, lab.right, ids) # type: ignore[attr-defined]
)
else:
sorter = np.lexsort((lab, ids))
ids, lab = ids[sorter], lab[sorter]
# group boundaries are where group ids change
idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0]
idx = np.r_[0, idchanges]
if not len(ids):
idx = idchanges
# new values are where sorted labels change
lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1))
inc = np.r_[True, lchanges]
if not len(val):
inc = lchanges
inc[idx] = True # group boundaries are also new values
out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts
# num. of times each group should be repeated
rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx))
# multi-index components
codes = self.grouper.reconstructed_codes
codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)]
levels = [ping.group_index for ping in self.grouper.groupings] + [lev]
names = self.grouper.names + [self.obj.name]
if dropna:
mask = codes[-1] != -1
if mask.all():
dropna = False
else:
out, codes = out[mask], [level_codes[mask] for level_codes in codes]
if normalize:
out = out.astype("float")
d = np.diff(np.r_[idx, len(ids)])
if dropna:
m = ids[lab == -1]
np.add.at(d, m, -1)
acc = rep(d)[mask]
else:
acc = rep(d)
out /= acc
if sort and bins is None:
cat = ids[inc][mask] if dropna else ids[inc]
sorter = np.lexsort((out if ascending else -out, cat))
out, codes[-1] = out[sorter], codes[-1][sorter]
if bins is not None:
# for compat. with libgroupby.value_counts need to ensure every
# bin is present at every index level, null filled with zeros
diff = np.zeros(len(out), dtype="bool")
for level_codes in codes[:-1]:
diff |= np.r_[True, level_codes[1:] != level_codes[:-1]]
ncat, nbin = diff.sum(), len(levels[-1])
left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)]
right = [diff.cumsum() - 1, codes[-1]]
_, idx = get_join_indexers(left, right, sort=False, how="left")
out = np.where(idx != -1, out[idx], 0)
if sort:
sorter = np.lexsort((out if ascending else -out, left[0]))
out, left[-1] = out[sorter], left[-1][sorter]
# build the multi-index w/ full levels
def build_codes(lev_codes: np.ndarray) -> np.ndarray:
return np.repeat(lev_codes[diff], nbin)
codes = [build_codes(lev_codes) for lev_codes in codes[:-1]]
codes.append(left[-1])
mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False)
if is_integer_dtype(out.dtype):
out = ensure_int64(out)
return self.obj._constructor(out, index=mi, name=self.obj.name)
@doc(Series.nlargest)
def nlargest(self, n: int = 5, keep: str = "first"):
f = partial(Series.nlargest, n=n, keep=keep)
data = self._obj_with_exclusions
# Don't change behavior if result index happens to be the same, i.e.
# already ordered and n >= all group sizes.
result = self._python_apply_general(f, data, not_indexed_same=True)
return result
@doc(Series.nsmallest)
def nsmallest(self, n: int = 5, keep: str = "first"):
f = partial(Series.nsmallest, n=n, keep=keep)
data = self._obj_with_exclusions
# Don't change behavior if result index happens to be the same, i.e.
# already ordered and n >= all group sizes.
result = self._python_apply_general(f, data, not_indexed_same=True)
return result
@pin_allowlisted_properties(DataFrame, base.dataframe_apply_allowlist)
class DataFrameGroupBy(GroupBy[DataFrame]):
_apply_allowlist = base.dataframe_apply_allowlist
_agg_examples_doc = dedent(
"""
Examples
--------
>>> df = pd.DataFrame(
... {
... "A": [1, 1, 2, 2],
... "B": [1, 2, 3, 4],
... "C": [0.362838, 0.227877, 1.267767, -0.562860],
... }
... )
>>> df
A B C
0 1 1 0.362838
1 1 2 0.227877
2 2 3 1.267767
3 2 4 -0.562860
The aggregation is for each column.
>>> df.groupby('A').agg('min')
B C
A
1 1 0.227877
2 3 -0.562860
Multiple aggregations
>>> df.groupby('A').agg(['min', 'max'])
B C
min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.562860 1.267767
Select a column for aggregation
>>> df.groupby('A').B.agg(['min', 'max'])
min max
A
1 1 2
2 3 4
Different aggregations per column
>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
B C
min max sum
A
1 1 2 0.590715
2 3 4 0.704907
To control the output names with different aggregations per column,
pandas supports "named aggregation"
>>> df.groupby("A").agg(
... b_min=pd.NamedAgg(column="B", aggfunc="min"),
... c_sum=pd.NamedAgg(column="C", aggfunc="sum"))
b_min c_sum
A
1 1 0.590715
2 3 0.704907
- The keywords are the *output* column names
- The values are tuples whose first element is the column to select
and the second element is the aggregation to apply to that column.
Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields
``['column', 'aggfunc']`` to make it clearer what the arguments are.
As usual, the aggregation can be a callable or a string alias.
See :ref:`groupby.aggregate.named` for more.
.. versionchanged:: 1.3.0
The resulting dtype will reflect the return value of the aggregating function.
>>> df.groupby("A")[["B"]].agg(lambda x: x.astype(float).min())
B
A
1 1.0
2 3.0
"""
)
@doc(_agg_template, examples=_agg_examples_doc, klass="DataFrame")
def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
if maybe_use_numba(engine):
with self._group_selection_context():
data = self._selected_obj
result = self._aggregate_with_numba(
data, func, *args, engine_kwargs=engine_kwargs, **kwargs
)
index = self.grouper.result_index
return self.obj._constructor(result, index=index, columns=data.columns)
relabeling, func, columns, order = reconstruct_func(func, **kwargs)
func = maybe_mangle_lambdas(func)
op = GroupByApply(self, func, args, kwargs)
result = op.agg()
if not is_dict_like(func) and result is not None:
return result
elif relabeling and result is not None:
# this should be the only (non-raising) case with relabeling
# used reordered index of columns
result = result.iloc[:, order]
result.columns = columns
if result is None:
# grouper specific aggregations
if self.grouper.nkeys > 1:
# test_groupby_as_index_series_scalar gets here with 'not self.as_index'
return self._python_agg_general(func, *args, **kwargs)
elif args or kwargs:
# test_pass_args_kwargs gets here (with and without as_index)
# can't return early
result = self._aggregate_frame(func, *args, **kwargs)
elif self.axis == 1:
# _aggregate_multiple_funcs does not allow self.axis == 1
# Note: axis == 1 precludes 'not self.as_index', see __init__
result = self._aggregate_frame(func)
return result
else:
# try to treat as if we are passing a list
gba = GroupByApply(self, [func], args=(), kwargs={})
try:
result = gba.agg()
except ValueError as err:
if "no results" not in str(err):
# raised directly by _aggregate_multiple_funcs
raise
result = self._aggregate_frame(func)
else:
sobj = self._selected_obj
if isinstance(sobj, Series):
# GH#35246 test_groupby_as_index_select_column_sum_empty_df
result.columns = self._obj_with_exclusions.columns.copy()
else:
# Retain our column names
result.columns._set_names(
sobj.columns.names, level=list(range(sobj.columns.nlevels))
)
# select everything except for the last level, which is the one
# containing the name of the function(s), see GH#32040
result.columns = result.columns.droplevel(-1)
if not self.as_index:
self._insert_inaxis_grouper_inplace(result)
result.index = Index(range(len(result)))
return result
agg = aggregate
def _iterate_slices(self) -> Iterable[Series]:
obj = self._selected_obj
if self.axis == 1:
obj = obj.T
if isinstance(obj, Series) and obj.name not in self.exclusions:
# Occurs when doing DataFrameGroupBy(...)["X"]
yield obj
else:
for label, values in obj.items():
if label in self.exclusions:
continue
yield values
def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame:
if self.grouper.nkeys != 1:
raise AssertionError("Number of keys must be 1")
obj = self._obj_with_exclusions
result: dict[Hashable, NDFrame | np.ndarray] = {}
if self.axis == 0:
# test_pass_args_kwargs_duplicate_columns gets here with non-unique columns
for name, data in self:
fres = func(data, *args, **kwargs)
result[name] = fres
else:
# we get here in a number of test_multilevel tests
for name in self.indices:
grp_df = self.get_group(name, obj=obj)
fres = func(grp_df, *args, **kwargs)
result[name] = fres
result_index = self.grouper.result_index
other_ax = obj.axes[1 - self.axis]
out = self.obj._constructor(result, index=other_ax, columns=result_index)
if self.axis == 0:
out = out.T
return out
def _aggregate_item_by_item(self, func, *args, **kwargs) -> DataFrame:
# only for axis==0
# tests that get here with non-unique cols:
# test_resample_with_timedelta_yields_no_empty_groups,
# test_resample_apply_product
obj = self._obj_with_exclusions
result: dict[int, NDFrame] = {}
for i, (item, sgb) in enumerate(self._iterate_column_groupbys(obj)):
result[i] = sgb.aggregate(func, *args, **kwargs)
res_df = self.obj._constructor(result)
res_df.columns = obj.columns
return res_df
def _wrap_applied_output(
self, data: DataFrame, values: list, not_indexed_same: bool = False
):
if len(values) == 0:
result = self.obj._constructor(
index=self.grouper.result_index, columns=data.columns
)
result = result.astype(data.dtypes.to_dict(), copy=False)
return result
# GH12824
first_not_none = next(com.not_none(*values), None)
if first_not_none is None:
# GH9684 - All values are None, return an empty frame.
return self.obj._constructor()
elif isinstance(first_not_none, DataFrame):
return self._concat_objects(values, not_indexed_same=not_indexed_same)