forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_isin.py
219 lines (171 loc) · 7.25 KB
/
test_isin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.arrays import PeriodArray
class TestSeriesIsIn:
def test_isin(self):
s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
result = s.isin(["A", "C"])
expected = Series([True, False, True, False, False, False, True, True])
tm.assert_series_equal(result, expected)
# GH#16012
# This specific issue has to have a series over 1e6 in len, but the
# comparison array (in_list) must be large enough so that numpy doesn't
# do a manual masking trick that will avoid this issue altogether
s = Series(list("abcdefghijk" * 10**5))
# If numpy doesn't do the manual comparison/mask, these
# unorderable mixed types are what cause the exception in numpy
in_list = [-1, "a", "b", "G", "Y", "Z", "E", "K", "E", "S", "I", "R", "R"] * 6
assert s.isin(in_list).sum() == 200000
def test_isin_with_string_scalar(self):
# GH#4763
s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
msg = (
r"only list-like objects are allowed to be passed to isin\(\), "
r"you passed a \[str\]"
)
with pytest.raises(TypeError, match=msg):
s.isin("a")
s = Series(["aaa", "b", "c"])
with pytest.raises(TypeError, match=msg):
s.isin("aaa")
def test_isin_datetimelike_mismatched_reso(self):
expected = Series([True, True, False, False, False])
ser = Series(date_range("jan-01-2013", "jan-05-2013"))
# fails on dtype conversion in the first place
day_values = np.asarray(ser[0:2].values).astype("datetime64[D]")
result = ser.isin(day_values)
tm.assert_series_equal(result, expected)
s_values = day_values.astype("M8[s]")
dta = type(ser._values)._simple_new(s_values, dtype=s_values.dtype)
result = ser.isin(dta)
tm.assert_series_equal(result, expected)
# FIXME(2.0): DTA._from_sequence incorrectly treats Timestamp[s].value
# as nanoseconds.
# result = ser.isin(list(dta))
# tm.assert_series_equal(result, expected)
def test_isin_with_i8(self):
# GH#5021
expected = Series([True, True, False, False, False])
expected2 = Series([False, True, False, False, False])
# datetime64[ns]
s = Series(date_range("jan-01-2013", "jan-05-2013"))
result = s.isin(s[0:2])
tm.assert_series_equal(result, expected)
result = s.isin(s[0:2].values)
tm.assert_series_equal(result, expected)
result = s.isin([s[1]])
tm.assert_series_equal(result, expected2)
result = s.isin([np.datetime64(s[1])])
tm.assert_series_equal(result, expected2)
result = s.isin(set(s[0:2]))
tm.assert_series_equal(result, expected)
# timedelta64[ns]
s = Series(pd.to_timedelta(range(5), unit="d"))
result = s.isin(s[0:2])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
def test_isin_empty(self, empty):
# see GH#16991
s = Series(["a", "b"])
expected = Series([False, False])
result = s.isin(empty)
tm.assert_series_equal(expected, result)
def test_isin_read_only(self):
# https://github.com/pandas-dev/pandas/issues/37174
arr = np.array([1, 2, 3])
arr.setflags(write=False)
s = Series([1, 2, 3])
result = s.isin(arr)
expected = Series([True, True, True])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", [object, None])
def test_isin_dt64_values_vs_ints(self, dtype):
# GH#36621 dont cast integers to datetimes for isin
dti = date_range("2013-01-01", "2013-01-05")
ser = Series(dti)
comps = np.asarray([1356998400000000000], dtype=dtype)
res = dti.isin(comps)
expected = np.array([False] * len(dti), dtype=bool)
tm.assert_numpy_array_equal(res, expected)
res = ser.isin(comps)
tm.assert_series_equal(res, Series(expected))
res = pd.core.algorithms.isin(ser, comps)
tm.assert_numpy_array_equal(res, expected)
def test_isin_tzawareness_mismatch(self):
dti = date_range("2013-01-01", "2013-01-05")
ser = Series(dti)
other = dti.tz_localize("UTC")
res = dti.isin(other)
expected = np.array([False] * len(dti), dtype=bool)
tm.assert_numpy_array_equal(res, expected)
res = ser.isin(other)
tm.assert_series_equal(res, Series(expected))
res = pd.core.algorithms.isin(ser, other)
tm.assert_numpy_array_equal(res, expected)
def test_isin_period_freq_mismatch(self):
dti = date_range("2013-01-01", "2013-01-05")
pi = dti.to_period("M")
ser = Series(pi)
# We construct another PeriodIndex with the same i8 values
# but different dtype
dtype = dti.to_period("Y").dtype
other = PeriodArray._simple_new(pi.asi8, dtype=dtype)
res = pi.isin(other)
expected = np.array([False] * len(pi), dtype=bool)
tm.assert_numpy_array_equal(res, expected)
res = ser.isin(other)
tm.assert_series_equal(res, Series(expected))
res = pd.core.algorithms.isin(ser, other)
tm.assert_numpy_array_equal(res, expected)
@pytest.mark.parametrize("values", [[-9.0, 0.0], [-9, 0]])
def test_isin_float_in_int_series(self, values):
# GH#19356 GH#21804
ser = Series(values)
result = ser.isin([-9, -0.5])
expected = Series([True, False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", ["boolean", "Int64", "Float64"])
@pytest.mark.parametrize(
"data,values,expected",
[
([0, 1, 0], [1], [False, True, False]),
([0, 1, 0], [1, pd.NA], [False, True, False]),
([0, pd.NA, 0], [1, 0], [True, False, True]),
([0, 1, pd.NA], [1, pd.NA], [False, True, True]),
([0, 1, pd.NA], [1, np.nan], [False, True, False]),
([0, pd.NA, pd.NA], [np.nan, pd.NaT, None], [False, False, False]),
],
)
def test_isin_masked_types(self, dtype, data, values, expected):
# GH#42405
ser = Series(data, dtype=dtype)
result = ser.isin(values)
expected = Series(expected, dtype="boolean")
tm.assert_series_equal(result, expected)
@pytest.mark.slow
def test_isin_large_series_mixed_dtypes_and_nan():
# https://github.com/pandas-dev/pandas/issues/37094
# combination of object dtype for the values and > 1_000_000 elements
ser = Series([1, 2, np.nan] * 1_000_000)
result = ser.isin({"foo", "bar"})
expected = Series([False] * 3 * 1_000_000)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"array,expected",
[
(
[0, 1j, 1j, 1, 1 + 1j, 1 + 2j, 1 + 1j],
Series([False, True, True, False, True, True, True], dtype=bool),
)
],
)
def test_isin_complex_numbers(array, expected):
# GH 17927
result = Series(array).isin([1j, 1 + 1j, 1 + 2j])
tm.assert_series_equal(result, expected)