forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_api.py
279 lines (251 loc) · 9.26 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import inspect
import pydoc
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
class TestSeriesMisc:
def test_tab_completion(self):
# GH 9910
s = Series(list("abcd"))
# Series of str values should have .str but not .dt/.cat in __dir__
assert "str" in dir(s)
assert "dt" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_dt(self):
# similarly for .dt
s = Series(date_range("1/1/2015", periods=5))
assert "dt" in dir(s)
assert "str" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_cat(self):
# Similarly for .cat, but with the twist that str and dt should be
# there if the categories are of that type first cat and str.
s = Series(list("abbcd"), dtype="category")
assert "cat" in dir(s)
assert "str" in dir(s) # as it is a string categorical
assert "dt" not in dir(s)
def test_tab_completion_cat_str(self):
# similar to cat and str
s = Series(date_range("1/1/2015", periods=5)).astype("category")
assert "cat" in dir(s)
assert "str" not in dir(s)
assert "dt" in dir(s) # as it is a datetime categorical
def test_tab_completion_with_categorical(self):
# test the tab completion display
ok_for_cat = [
"categories",
"codes",
"ordered",
"set_categories",
"add_categories",
"remove_categories",
"rename_categories",
"reorder_categories",
"remove_unused_categories",
"as_ordered",
"as_unordered",
]
s = Series(list("aabbcde")).astype("category")
results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")})
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
@pytest.mark.parametrize(
"index",
[
Index(list("ab") * 5, dtype="category"),
Index([str(i) for i in range(10)]),
Index(["foo", "bar", "baz"] * 2),
date_range("2020-01-01", periods=10),
period_range("2020-01-01", periods=10, freq="D"),
timedelta_range("1 day", periods=10),
Index(np.arange(10), dtype=np.uint64),
Index(np.arange(10), dtype=np.int64),
Index(np.arange(10), dtype=np.float64),
Index([True, False]),
Index([f"a{i}" for i in range(101)]),
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
],
)
def test_index_tab_completion(self, index):
# dir contains string-like values of the Index.
s = Series(index=index, dtype=object)
dir_s = dir(s)
for i, x in enumerate(s.index.unique(level=0)):
if i < 100:
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
else:
assert x not in dir_s
@pytest.mark.parametrize("ser", [Series(dtype=object), Series([1])])
def test_not_hashable(self, ser):
msg = "unhashable type: 'Series'"
with pytest.raises(TypeError, match=msg):
hash(ser)
def test_contains(self, datetime_series):
tm.assert_contains_all(datetime_series.index, datetime_series)
def test_axis_alias(self):
s = Series([1, 2, np.nan])
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
assert s.dropna().sum("rows") == 3
assert s._get_axis_number("rows") == 0
assert s._get_axis_name("rows") == "index"
def test_class_axis(self):
# https://github.com/pandas-dev/pandas/issues/18147
# no exception and no empty docstring
assert pydoc.getdoc(Series.index)
def test_ndarray_compat(self):
# test numpy compat with Series as sub-class of NDFrame
tsdf = DataFrame(
np.random.default_rng(2).standard_normal((1000, 3)),
columns=["A", "B", "C"],
index=date_range("1/1/2000", periods=1000),
)
def f(x):
return x[x.idxmax()]
result = tsdf.apply(f)
expected = tsdf.max()
tm.assert_series_equal(result, expected)
def test_ndarray_compat_like_func(self):
# using an ndarray like function
s = Series(np.random.default_rng(2).standard_normal(10))
result = Series(np.ones_like(s))
expected = Series(1, index=range(10), dtype="float64")
tm.assert_series_equal(result, expected)
def test_empty_method(self):
s_empty = Series(dtype=object)
assert s_empty.empty
@pytest.mark.parametrize("dtype", ["int64", object])
def test_empty_method_full_series(self, dtype):
full_series = Series(index=[1], dtype=dtype)
assert not full_series.empty
@pytest.mark.parametrize("dtype", [None, "Int64"])
def test_integer_series_size(self, dtype):
# GH 25580
s = Series(range(9), dtype=dtype)
assert s.size == 9
def test_attrs(self):
s = Series([0, 1], name="abc")
assert s.attrs == {}
s.attrs["version"] = 1
result = s + 1
assert result.attrs == {"version": 1}
def test_inspect_getmembers(self):
# GH38782
pytest.importorskip("jinja2")
ser = Series(dtype=object)
inspect.getmembers(ser)
def test_unknown_attribute(self):
# GH#9680
tdi = timedelta_range(start=0, periods=10, freq="1s")
ser = Series(np.random.default_rng(2).normal(size=10), index=tdi)
assert "foo" not in ser.__dict__
msg = "'Series' object has no attribute 'foo'"
with pytest.raises(AttributeError, match=msg):
ser.foo
@pytest.mark.parametrize("op", ["year", "day", "second", "weekday"])
def test_datetime_series_no_datelike_attrs(self, op, datetime_series):
# GH#7206
msg = f"'Series' object has no attribute '{op}'"
with pytest.raises(AttributeError, match=msg):
getattr(datetime_series, op)
def test_series_datetimelike_attribute_access(self):
# attribute access should still work!
ser = Series({"year": 2000, "month": 1, "day": 10})
assert ser.year == 2000
assert ser.month == 1
assert ser.day == 10
def test_series_datetimelike_attribute_access_invalid(self):
ser = Series({"year": 2000, "month": 1, "day": 10})
msg = "'Series' object has no attribute 'weekday'"
with pytest.raises(AttributeError, match=msg):
ser.weekday
@pytest.mark.parametrize(
"kernel, has_numeric_only",
[
("skew", True),
("var", True),
("all", False),
("prod", True),
("any", False),
("idxmin", False),
("quantile", False),
("idxmax", False),
("min", True),
("sem", True),
("mean", True),
("nunique", False),
("max", True),
("sum", True),
("count", False),
("median", True),
("std", True),
("rank", True),
("pct_change", False),
("cummax", False),
("shift", False),
("diff", False),
("cumsum", False),
("cummin", False),
("cumprod", False),
("fillna", False),
("ffill", False),
("bfill", False),
("sample", False),
("tail", False),
("take", False),
("head", False),
("cov", False),
("corr", False),
],
)
@pytest.mark.parametrize("dtype", [bool, int, float, object])
def test_numeric_only(self, kernel, has_numeric_only, dtype):
# GH#47500
ser = Series([0, 1, 1], dtype=dtype)
if kernel == "corrwith":
args = (ser,)
elif kernel == "corr":
args = (ser,)
elif kernel == "cov":
args = (ser,)
elif kernel == "nth":
args = (0,)
elif kernel == "fillna":
args = (True,)
elif kernel == "fillna":
args = ("ffill",)
elif kernel == "take":
args = ([0],)
elif kernel == "quantile":
args = (0.5,)
else:
args = ()
method = getattr(ser, kernel)
if not has_numeric_only:
msg = (
"(got an unexpected keyword argument 'numeric_only'"
"|too many arguments passed in)"
)
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
elif dtype is object:
msg = f"Series.{kernel} does not allow numeric_only=True with non-numeric"
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
else:
result = method(*args, numeric_only=True)
expected = method(*args, numeric_only=False)
if isinstance(expected, Series):
# transformer
tm.assert_series_equal(result, expected)
else:
# reducer
assert result == expected