forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_replace.py
450 lines (366 loc) · 15.9 KB
/
test_replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import re
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class TestSeriesReplace:
def test_replace(self, datetime_series):
N = 100
ser = pd.Series(np.random.randn(N))
ser[0:4] = np.nan
ser[6:10] = 0
# replace list with a single value
return_value = ser.replace([np.nan], -1, inplace=True)
assert return_value is None
exp = ser.fillna(-1)
tm.assert_series_equal(ser, exp)
rs = ser.replace(0.0, np.nan)
ser[ser == 0.0] = np.nan
tm.assert_series_equal(rs, ser)
ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
ser[:5] = np.nan
ser[6:10] = "foo"
ser[20:30] = "bar"
# replace list with a single value
rs = ser.replace([np.nan, "foo", "bar"], -1)
assert (rs[:5] == -1).all()
assert (rs[6:10] == -1).all()
assert (rs[20:30] == -1).all()
assert (pd.isna(ser[:5])).all()
# replace with different values
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
assert (rs[:5] == -1).all()
assert (rs[6:10] == -2).all()
assert (rs[20:30] == -3).all()
assert (pd.isna(ser[:5])).all()
# replace with different values with 2 lists
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
tm.assert_series_equal(rs, rs2)
# replace inplace
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
assert return_value is None
assert (ser[:5] == -1).all()
assert (ser[6:10] == -1).all()
assert (ser[20:30] == -1).all()
ser = pd.Series([np.nan, 0, np.inf])
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT])
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
filled = ser.copy()
filled[4] = 0
tm.assert_series_equal(ser.replace(np.inf, 0), filled)
ser = pd.Series(datetime_series.index)
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
# malformed
msg = r"Replacement lists must match in length\. Expecting 3 got 2"
with pytest.raises(ValueError, match=msg):
ser.replace([1, 2, 3], [np.nan, 0])
# make sure that we aren't just masking a TypeError because bools don't
# implement indexing
with pytest.raises(TypeError, match="Cannot compare types .+"):
ser.replace([1, 2], [np.nan, 0])
ser = pd.Series([0, 1, 2, 3, 4])
result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0]))
def test_replace_gh5319(self):
# API change from 0.12?
# GH 5319
ser = pd.Series([0, np.nan, 2, 3, 4])
expected = ser.ffill()
result = ser.replace([np.nan])
tm.assert_series_equal(result, expected)
ser = pd.Series([0, np.nan, 2, 3, 4])
expected = ser.ffill()
result = ser.replace(np.nan)
tm.assert_series_equal(result, expected)
# GH 5797
ser = pd.Series(pd.date_range("20130101", periods=5))
expected = ser.copy()
expected.loc[2] = pd.Timestamp("20120101")
result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")})
tm.assert_series_equal(result, expected)
result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101"))
tm.assert_series_equal(result, expected)
# GH 11792: Test with replacing NaT in a list with tz data
ts = pd.Timestamp("2015/01/01", tz="UTC")
s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")])
result = s.replace([np.nan, pd.NaT], pd.Timestamp.min)
expected = pd.Series([pd.Timestamp.min, ts], dtype=object)
tm.assert_series_equal(expected, result)
def test_replace_timedelta_td64(self):
tdi = pd.timedelta_range(0, periods=5)
ser = pd.Series(tdi)
# Using a single dict argument means we go through replace_list
result = ser.replace({ser[1]: ser[3]})
expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]])
tm.assert_series_equal(result, expected)
def test_replace_with_single_list(self):
ser = pd.Series([0, 1, 2, 3, 4])
result = ser.replace([1, 2, 3])
tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4]))
s = ser.copy()
return_value = s.replace([1, 2, 3], inplace=True)
assert return_value is None
tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4]))
# make sure things don't get corrupted when fillna call fails
s = ser.copy()
msg = (
r"Invalid fill method\. Expecting pad \(ffill\) or backfill "
r"\(bfill\)\. Got crash_cymbal"
)
with pytest.raises(ValueError, match=msg):
return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal")
assert return_value is None
tm.assert_series_equal(s, ser)
def test_replace_with_empty_list(self):
# GH 21977
s = pd.Series([[1], [2, 3], [], np.nan, [4]])
expected = s
result = s.replace([], np.nan)
tm.assert_series_equal(result, expected)
# GH 19266
with pytest.raises(ValueError, match="cannot assign mismatch"):
s.replace({np.nan: []})
with pytest.raises(ValueError, match="cannot assign mismatch"):
s.replace({np.nan: ["dummy", "alt"]})
def test_replace_mixed_types(self):
s = pd.Series(np.arange(5), dtype="int64")
def check_replace(to_rep, val, expected):
sc = s.copy()
r = s.replace(to_rep, val)
return_value = sc.replace(to_rep, val, inplace=True)
assert return_value is None
tm.assert_series_equal(expected, r)
tm.assert_series_equal(expected, sc)
# MUST upcast to float
e = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0])
tr, v = [3], [3.0]
check_replace(tr, v, e)
# MUST upcast to float
e = pd.Series([0, 1, 2, 3.5, 4])
tr, v = [3], [3.5]
check_replace(tr, v, e)
# casts to object
e = pd.Series([0, 1, 2, 3.5, "a"])
tr, v = [3, 4], [3.5, "a"]
check_replace(tr, v, e)
# again casts to object
e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")])
tr, v = [3, 4], [3.5, pd.Timestamp("20130101")]
check_replace(tr, v, e)
# casts to object
e = pd.Series([0, 1, 2, 3.5, True], dtype="object")
tr, v = [3, 4], [3.5, True]
check_replace(tr, v, e)
# test an object with dates + floats + integers + strings
dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D"))
result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"])
expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object)
tm.assert_series_equal(result, expected)
def test_replace_bool_with_string_no_op(self):
s = pd.Series([True, False, True])
result = s.replace("fun", "in-the-sun")
tm.assert_series_equal(s, result)
def test_replace_bool_with_string(self):
# nonexistent elements
s = pd.Series([True, False, True])
result = s.replace(True, "2u")
expected = pd.Series(["2u", False, "2u"])
tm.assert_series_equal(expected, result)
def test_replace_bool_with_bool(self):
s = pd.Series([True, False, True])
result = s.replace(True, False)
expected = pd.Series([False] * len(s))
tm.assert_series_equal(expected, result)
def test_replace_with_dict_with_bool_keys(self):
s = pd.Series([True, False, True])
with pytest.raises(TypeError, match="Cannot compare types .+"):
s.replace({"asdf": "asdb", True: "yes"})
def test_replace2(self):
N = 100
ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
ser[:5] = np.nan
ser[6:10] = "foo"
ser[20:30] = "bar"
# replace list with a single value
rs = ser.replace([np.nan, "foo", "bar"], -1)
assert (rs[:5] == -1).all()
assert (rs[6:10] == -1).all()
assert (rs[20:30] == -1).all()
assert (pd.isna(ser[:5])).all()
# replace with different values
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
assert (rs[:5] == -1).all()
assert (rs[6:10] == -2).all()
assert (rs[20:30] == -3).all()
assert (pd.isna(ser[:5])).all()
# replace with different values with 2 lists
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
tm.assert_series_equal(rs, rs2)
# replace inplace
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
assert return_value is None
assert (ser[:5] == -1).all()
assert (ser[6:10] == -1).all()
assert (ser[20:30] == -1).all()
def test_replace_with_dictlike_and_string_dtype(self):
# GH 32621
s = pd.Series(["one", "two", np.nan], dtype="string")
expected = pd.Series(["1", "2", np.nan])
result = s.replace({"one": "1", "two": "2"})
tm.assert_series_equal(expected, result)
def test_replace_with_empty_dictlike(self):
# GH 15289
s = pd.Series(list("abcd"))
tm.assert_series_equal(s, s.replace(dict()))
with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False):
empty_series = pd.Series([])
tm.assert_series_equal(s, s.replace(empty_series))
def test_replace_string_with_number(self):
# GH 15743
s = pd.Series([1, 2, 3])
result = s.replace("2", np.nan)
expected = pd.Series([1, 2, 3])
tm.assert_series_equal(expected, result)
def test_replace_replacer_equals_replacement(self):
# GH 20656
# make sure all replacers are matching against original values
s = pd.Series(["a", "b"])
expected = pd.Series(["b", "a"])
result = s.replace({"a": "b", "b": "a"})
tm.assert_series_equal(expected, result)
def test_replace_unicode_with_number(self):
# GH 15743
s = pd.Series([1, 2, 3])
result = s.replace("2", np.nan)
expected = pd.Series([1, 2, 3])
tm.assert_series_equal(expected, result)
def test_replace_mixed_types_with_string(self):
# Testing mixed
s = pd.Series([1, 2, 3, "4", 4, 5])
result = s.replace([2, "4"], np.nan)
expected = pd.Series([1, np.nan, 3, np.nan, 4, 5])
tm.assert_series_equal(expected, result)
@pytest.mark.parametrize(
"categorical, numeric",
[
(pd.Categorical("A", categories=["A", "B"]), [1]),
(pd.Categorical(("A",), categories=["A", "B"]), [1]),
(pd.Categorical(("A", "B"), categories=["A", "B"]), [1, 2]),
],
)
def test_replace_categorical(self, categorical, numeric):
# GH 24971
# Do not check if dtypes are equal due to a known issue that
# Categorical.replace sometimes coerces to object (GH 23305)
s = pd.Series(categorical)
result = s.replace({"A": 1, "B": 2})
expected = pd.Series(numeric)
tm.assert_series_equal(expected, result)
def test_replace_categorical_single(self):
# GH 26988
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
s = pd.Series(dti)
c = s.astype("category")
expected = c.copy()
expected = expected.cat.add_categories("foo")
expected[2] = "foo"
expected = expected.cat.remove_unused_categories()
assert c[2] != "foo"
result = c.replace(c[2], "foo")
tm.assert_series_equal(expected, result)
assert c[2] != "foo" # ensure non-inplace call does not alter original
return_value = c.replace(c[2], "foo", inplace=True)
assert return_value is None
tm.assert_series_equal(expected, c)
first_value = c[0]
return_value = c.replace(c[1], c[0], inplace=True)
assert return_value is None
assert c[0] == c[1] == first_value # test replacing with existing value
def test_replace_with_no_overflowerror(self):
# GH 25616
# casts to object without Exception from OverflowError
s = pd.Series([0, 1, 2, 3, 4])
result = s.replace([3], ["100000000000000000000"])
expected = pd.Series([0, 1, 2, "100000000000000000000", 4])
tm.assert_series_equal(result, expected)
s = pd.Series([0, "100000000000000000000", "100000000000000000001"])
result = s.replace(["100000000000000000000"], [1])
expected = pd.Series([0, 1, "100000000000000000001"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, to_replace, exp",
[
([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]),
(["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]),
],
)
def test_replace_commutative(self, ser, to_replace, exp):
# GH 16051
# DataFrame.replace() overwrites when values are non-numeric
series = pd.Series(ser)
expected = pd.Series(exp)
result = series.replace(to_replace)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])]
)
def test_replace_no_cast(self, ser, exp):
# GH 9113
# BUG: replace int64 dtype with bool coerces to int64
series = pd.Series(ser)
result = series.replace(2, True)
expected = pd.Series(exp)
tm.assert_series_equal(result, expected)
def test_replace_invalid_to_replace(self):
# GH 18634
# API: replace() should raise an exception if invalid argument is given
series = pd.Series(["a", "b", "c "])
msg = (
r"Expecting 'to_replace' to be either a scalar, array-like, "
r"dict or None, got invalid type.*"
)
with pytest.raises(TypeError, match=msg):
series.replace(lambda x: x.strip())
@pytest.mark.parametrize("frame", [False, True])
def test_replace_nonbool_regex(self, frame):
obj = pd.Series(["a", "b", "c "])
if frame:
obj = obj.to_frame()
msg = "'to_replace' must be 'None' if 'regex' is not a bool"
with pytest.raises(ValueError, match=msg):
obj.replace(to_replace=["a"], regex="foo")
@pytest.mark.parametrize("frame", [False, True])
def test_replace_empty_copy(self, frame):
obj = pd.Series([], dtype=np.float64)
if frame:
obj = obj.to_frame()
res = obj.replace(4, 5, inplace=True)
assert res is None
res = obj.replace(4, 5, inplace=False)
tm.assert_equal(res, obj)
assert res is not obj
def test_replace_only_one_dictlike_arg(self):
# GH#33340
ser = pd.Series([1, 2, "A", pd.Timestamp.now(), True])
to_replace = {0: 1, 2: "A"}
value = "foo"
msg = "Series.replace cannot use dict-like to_replace and non-None value"
with pytest.raises(ValueError, match=msg):
ser.replace(to_replace, value)
to_replace = 1
value = {0: "foo", 2: "bar"}
msg = "Series.replace cannot use dict-value and non-None to_replace"
with pytest.raises(ValueError, match=msg):
ser.replace(to_replace, value)
def test_replace_extension_other(self):
# https://github.com/pandas-dev/pandas/issues/34530
ser = pd.Series(pd.array([1, 2, 3], dtype="Int64"))
ser.replace("", "") # no exception
def test_replace_with_compiled_regex(self):
# https://github.com/pandas-dev/pandas/issues/35680
s = pd.Series(["a", "b", "c"])
regex = re.compile("^a$")
result = s.replace({regex: "z"}, regex=True)
expected = pd.Series(["z", "b", "c"])
tm.assert_series_equal(result, expected)