forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_numeric.py
904 lines (716 loc) · 32.6 KB
/
test_numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# -*- coding: utf-8 -*-
# Arithmetc tests for DataFrame/Series/Index/Array classes that should
# behave identically.
# Specifically for numeric dtypes
from decimal import Decimal
import operator
import pytest
import numpy as np
import pandas as pd
import pandas.util.testing as tm
from pandas.compat import PY3, Iterable
from pandas.core import ops
from pandas import Timedelta, Series, Index, TimedeltaIndex
# ------------------------------------------------------------------
# Comparisons
class TestNumericComparisons(object):
def test_operator_series_comparison_zerorank(self):
# GH#13006
result = np.float64(0) > pd.Series([1, 2, 3])
expected = 0.0 > pd.Series([1, 2, 3])
tm.assert_series_equal(result, expected)
result = pd.Series([1, 2, 3]) < np.float64(0)
expected = pd.Series([1, 2, 3]) < 0.0
tm.assert_series_equal(result, expected)
result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2])
expected = 0.0 > pd.Series([1, 2, 3])
tm.assert_series_equal(result, expected)
def test_df_numeric_cmp_dt64_raises(self):
# GH#8932, GH#22163
ts = pd.Timestamp.now()
df = pd.DataFrame({'x': range(5)})
with pytest.raises(TypeError):
df > ts
with pytest.raises(TypeError):
df < ts
with pytest.raises(TypeError):
ts < df
with pytest.raises(TypeError):
ts > df
assert not (df == ts).any().any()
assert (df != ts).all().all()
def test_compare_invalid(self):
# GH#8058
# ops testing
a = pd.Series(np.random.randn(5), name=0)
b = pd.Series(np.random.randn(5))
b.name = pd.Timestamp('2000-01-01')
tm.assert_series_equal(a / b, 1 / (b / a))
# ------------------------------------------------------------------
# Numeric dtypes Arithmetic with Timedelta Scalar
class TestNumericArraylikeArithmeticWithTimedeltaLike(object):
# TODO: also check name retentention
@pytest.mark.parametrize('box_cls', [np.array, pd.Index, pd.Series])
@pytest.mark.parametrize('left', [
pd.RangeIndex(10, 40, 10)] + [cls([10, 20, 30], dtype=dtype)
for dtype in ['i1', 'i2', 'i4', 'i8',
'u1', 'u2', 'u4', 'u8',
'f2', 'f4', 'f8']
for cls in [pd.Series, pd.Index]],
ids=lambda x: type(x).__name__ + str(x.dtype))
def test_mul_td64arr(self, left, box_cls):
# GH#22390
right = np.array([1, 2, 3], dtype='m8[s]')
right = box_cls(right)
expected = pd.TimedeltaIndex(['10s', '40s', '90s'])
if isinstance(left, pd.Series) or box_cls is pd.Series:
expected = pd.Series(expected)
result = left * right
tm.assert_equal(result, expected)
result = right * left
tm.assert_equal(result, expected)
# TODO: also check name retentention
@pytest.mark.parametrize('box_cls', [np.array, pd.Index, pd.Series])
@pytest.mark.parametrize('left', [
pd.RangeIndex(10, 40, 10)] + [cls([10, 20, 30], dtype=dtype)
for dtype in ['i1', 'i2', 'i4', 'i8',
'u1', 'u2', 'u4', 'u8',
'f2', 'f4', 'f8']
for cls in [pd.Series, pd.Index]],
ids=lambda x: type(x).__name__ + str(x.dtype))
def test_div_td64arr(self, left, box_cls):
# GH#22390
right = np.array([10, 40, 90], dtype='m8[s]')
right = box_cls(right)
expected = pd.TimedeltaIndex(['1s', '2s', '3s'])
if isinstance(left, pd.Series) or box_cls is pd.Series:
expected = pd.Series(expected)
result = right / left
tm.assert_equal(result, expected)
result = right // left
tm.assert_equal(result, expected)
with pytest.raises(TypeError):
left / right
with pytest.raises(TypeError):
left // right
# TODO: de-duplicate with test_numeric_arr_mul_tdscalar
def test_ops_series(self):
# regression test for G#H8813
td = Timedelta('1 day')
other = pd.Series([1, 2])
expected = pd.Series(pd.to_timedelta(['1 day', '2 days']))
tm.assert_series_equal(expected, td * other)
tm.assert_series_equal(expected, other * td)
# TODO: also test non-nanosecond timedelta64 and Tick objects;
# see test_numeric_arr_rdiv_tdscalar for note on these failing
@pytest.mark.parametrize('scalar_td', [
Timedelta(days=1),
Timedelta(days=1).to_timedelta64(),
Timedelta(days=1).to_pytimedelta()],
ids=lambda x: type(x).__name__)
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box):
# GH#19333
index = numeric_idx
expected = pd.timedelta_range('0 days', '4 days')
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = index * scalar_td
tm.assert_equal(result, expected)
commute = scalar_td * index
tm.assert_equal(commute, expected)
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box):
if box is not pd.Index and isinstance(three_days, pd.offsets.Tick):
raise pytest.xfail("Tick division not implemented")
index = numeric_idx[1:3]
expected = TimedeltaIndex(['3 Days', '36 Hours'])
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = three_days / index
tm.assert_equal(result, expected)
with pytest.raises(TypeError):
index / three_days
@pytest.mark.parametrize('other', [
pd.Timedelta(hours=31),
pd.Timedelta(hours=31).to_pytimedelta(),
pd.Timedelta(hours=31).to_timedelta64(),
pd.Timedelta(hours=31).to_timedelta64().astype('m8[h]'),
np.timedelta64('NaT'),
np.timedelta64('NaT', 'D'),
pd.offsets.Minute(3),
pd.offsets.Second(0)])
def test_add_sub_timedeltalike_invalid(self, numeric_idx, other, box):
left = tm.box_expected(numeric_idx, box)
with pytest.raises(TypeError):
left + other
with pytest.raises(TypeError):
other + left
with pytest.raises(TypeError):
left - other
with pytest.raises(TypeError):
other - left
# ------------------------------------------------------------------
# Arithmetic
class TestDivisionByZero(object):
def test_div_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf],
dtype=np.float64)
result = idx / zero
tm.assert_index_equal(result, expected)
ser_compat = Series(idx).astype('i8') / np.array(zero).astype('i8')
tm.assert_series_equal(ser_compat, Series(result))
def test_floordiv_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf],
dtype=np.float64)
result = idx // zero
tm.assert_index_equal(result, expected)
ser_compat = Series(idx).astype('i8') // np.array(zero).astype('i8')
tm.assert_series_equal(ser_compat, Series(result))
def test_mod_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = pd.Index([np.nan, np.nan, np.nan, np.nan, np.nan],
dtype=np.float64)
result = idx % zero
tm.assert_index_equal(result, expected)
ser_compat = Series(idx).astype('i8') % np.array(zero).astype('i8')
tm.assert_series_equal(ser_compat, Series(result))
def test_divmod_zero(self, zero, numeric_idx):
idx = numeric_idx
exleft = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf],
dtype=np.float64)
exright = pd.Index([np.nan, np.nan, np.nan, np.nan, np.nan],
dtype=np.float64)
result = divmod(idx, zero)
tm.assert_index_equal(result[0], exleft)
tm.assert_index_equal(result[1], exright)
# ------------------------------------------------------------------
@pytest.mark.parametrize('dtype2', [
np.int64, np.int32, np.int16, np.int8,
np.float64, np.float32, np.float16,
np.uint64, np.uint32, np.uint16, np.uint8])
@pytest.mark.parametrize('dtype1', [np.int64, np.float64, np.uint64])
def test_ser_div_ser(self, dtype1, dtype2):
# no longer do integer div for any ops, but deal with the 0's
first = Series([3, 4, 5, 8], name='first').astype(dtype1)
second = Series([0, 0, 0, 3], name='second').astype(dtype2)
with np.errstate(all='ignore'):
expected = Series(first.values.astype(np.float64) / second.values,
dtype='float64', name=None)
expected.iloc[0:3] = np.inf
result = first / second
tm.assert_series_equal(result, expected)
assert not result.equals(second / first)
def test_rdiv_zero_compat(self):
# GH#8674
zero_array = np.array([0] * 5)
data = np.random.randn(5)
expected = Series([0.] * 5)
result = zero_array / Series(data)
tm.assert_series_equal(result, expected)
result = Series(zero_array) / data
tm.assert_series_equal(result, expected)
result = Series(zero_array) / Series(data)
tm.assert_series_equal(result, expected)
def test_div_zero_inf_signs(self):
# GH#9144, inf signing
ser = Series([-1, 0, 1], name='first')
expected = Series([-np.inf, np.nan, np.inf], name='first')
result = ser / 0
tm.assert_series_equal(result, expected)
def test_rdiv_zero(self):
# GH#9144
ser = Series([-1, 0, 1], name='first')
expected = Series([0.0, np.nan, 0.0], name='first')
result = 0 / ser
tm.assert_series_equal(result, expected)
def test_floordiv_div(self):
# GH#9144
ser = Series([-1, 0, 1], name='first')
result = ser // 0
expected = Series([-np.inf, np.nan, np.inf], name='first')
tm.assert_series_equal(result, expected)
def test_df_div_zero_df(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
result = df / df
first = pd.Series([1.0, 1.0, 1.0, 1.0])
second = pd.Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({'first': first, 'second': second})
tm.assert_frame_equal(result, expected)
def test_df_div_zero_array(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
first = pd.Series([1.0, 1.0, 1.0, 1.0])
second = pd.Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({'first': first, 'second': second})
with np.errstate(all='ignore'):
arr = df.values.astype('float') / df.values
result = pd.DataFrame(arr, index=df.index,
columns=df.columns)
tm.assert_frame_equal(result, expected)
def test_df_div_zero_int(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
result = df / 0
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
expected.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all='ignore'):
arr = df.values.astype('float64') / 0
result2 = pd.DataFrame(arr, index=df.index,
columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_div_zero_series_does_not_commute(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame(np.random.randn(10, 5))
ser = df[0]
res = ser / df
res2 = df / ser
assert not res.fillna(0).equals(res2.fillna(0))
# ------------------------------------------------------------------
# Mod By Zero
def test_df_mod_zero_df(self):
# GH#3590, modulo as ints
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
# ###
first = pd.Series([0, 0, 0, 0], dtype='float64')
second = pd.Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({'first': first, 'second': second})
result = df % df
tm.assert_frame_equal(result, expected)
def test_df_mod_zero_array(self):
# GH#3590, modulo as ints
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
# ###
first = pd.Series([0, 0, 0, 0], dtype='float64')
second = pd.Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({'first': first, 'second': second})
# numpy has a slightly different (wrong) treatment
with np.errstate(all='ignore'):
arr = df.values % df.values
result2 = pd.DataFrame(arr, index=df.index,
columns=df.columns, dtype='float64')
result2.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_int(self):
# GH#3590, modulo as ints
df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]})
result = df % 0
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all='ignore'):
arr = df.values.astype('float64') % 0
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_series_does_not_commute(self):
# GH#3590, modulo as ints
# not commutative with series
df = pd.DataFrame(np.random.randn(10, 5))
ser = df[0]
res = ser % df
res2 = df % ser
assert not res.fillna(0).equals(res2.fillna(0))
class TestMultiplicationDivision(object):
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
# for non-timestamp/timedelta/period dtypes
@pytest.mark.parametrize('box', [
pytest.param(pd.Index,
marks=pytest.mark.xfail(reason="Index.__div__ always "
"raises",
raises=TypeError, strict=True)),
pd.Series,
pd.DataFrame
], ids=lambda x: x.__name__)
def test_divide_decimal(self, box):
# resolves issue GH#9787
ser = Series([Decimal(10)])
expected = Series([Decimal(5)])
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = ser / Decimal(2)
tm.assert_equal(result, expected)
result = ser // Decimal(2)
tm.assert_equal(result, expected)
def test_div_equiv_binop(self):
# Test Series.div as well as Series.__div__
# float/integer issue
# GH#7785
first = Series([1, 0], name='first')
second = Series([-0.01, -0.02], name='second')
expected = Series([-0.01, -np.inf])
result = second.div(first)
tm.assert_series_equal(result, expected, check_names=False)
result = second / first
tm.assert_series_equal(result, expected)
def test_div_int(self, numeric_idx):
# truediv under PY3
idx = numeric_idx
result = idx / 1
expected = idx
if PY3:
expected = expected.astype('float64')
tm.assert_index_equal(result, expected)
result = idx / 2
if PY3:
expected = expected.astype('float64')
expected = Index(idx.values / 2)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize('op', [operator.mul, ops.rmul, operator.floordiv])
def test_mul_int_identity(self, op, numeric_idx, box):
idx = numeric_idx
idx = tm.box_expected(idx, box)
result = op(idx, 1)
tm.assert_equal(result, idx)
def test_mul_int_array(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
result = idx * np.array(5, dtype='int64')
tm.assert_index_equal(result, idx * 5)
arr_dtype = 'uint64' if isinstance(idx, pd.UInt64Index) else 'int64'
result = idx * np.arange(5, dtype=arr_dtype)
tm.assert_index_equal(result, didx)
def test_mul_int_series(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
arr_dtype = 'uint64' if isinstance(idx, pd.UInt64Index) else 'int64'
result = idx * Series(np.arange(5, dtype=arr_dtype))
tm.assert_series_equal(result, Series(didx))
def test_mul_float_series(self, numeric_idx):
idx = numeric_idx
rng5 = np.arange(5, dtype='float64')
result = idx * Series(rng5 + 0.1)
expected = Series(rng5 * (rng5 + 0.1))
tm.assert_series_equal(result, expected)
def test_mul_index(self, numeric_idx):
# in general not true for RangeIndex
idx = numeric_idx
if not isinstance(idx, pd.RangeIndex):
result = idx * idx
tm.assert_index_equal(result, idx ** 2)
def test_mul_datelike_raises(self, numeric_idx):
idx = numeric_idx
with pytest.raises(TypeError):
idx * pd.date_range('20130101', periods=5)
def test_mul_size_mismatch_raises(self, numeric_idx):
idx = numeric_idx
with pytest.raises(ValueError):
idx * idx[0:3]
with pytest.raises(ValueError):
idx * np.array([1, 2])
@pytest.mark.parametrize('op', [operator.pow, ops.rpow])
def test_pow_float(self, op, numeric_idx, box):
# test power calculations both ways, GH#14973
idx = numeric_idx
expected = pd.Float64Index(op(idx.values, 2.0))
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = op(idx, 2.0)
tm.assert_equal(result, expected)
def test_modulo(self, numeric_idx, box):
# GH#9244
idx = numeric_idx
expected = Index(idx.values % 2)
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = idx % 2
tm.assert_equal(result, expected)
def test_divmod_scalar(self, numeric_idx):
idx = numeric_idx
result = divmod(idx, 2)
with np.errstate(all='ignore'):
div, mod = divmod(idx.values, 2)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_ndarray(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, other)
with np.errstate(all='ignore'):
div, mod = divmod(idx.values, other)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_series(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, Series(other))
with np.errstate(all='ignore'):
div, mod = divmod(idx.values, other)
expected = Series(div), Series(mod)
for r, e in zip(result, expected):
tm.assert_series_equal(r, e)
@pytest.mark.parametrize('other', [np.nan, 7, -23, 2.718, -3.14, np.inf])
def test_ops_np_scalar(self, other):
vals = np.random.randn(5, 3)
f = lambda x: pd.DataFrame(x, index=list('ABCDE'),
columns=['jim', 'joe', 'jolie'])
df = f(vals)
tm.assert_frame_equal(df / np.array(other), f(vals / other))
tm.assert_frame_equal(np.array(other) * df, f(vals * other))
tm.assert_frame_equal(df + np.array(other), f(vals + other))
tm.assert_frame_equal(np.array(other) - df, f(other - vals))
# TODO: This came from series.test.test_operators, needs cleanup
def test_operators_frame(self):
# rpow does not work with DataFrame
ts = tm.makeTimeSeries()
ts.name = 'ts'
df = pd.DataFrame({'A': ts})
tm.assert_series_equal(ts + ts, ts + df['A'],
check_names=False)
tm.assert_series_equal(ts ** ts, ts ** df['A'],
check_names=False)
tm.assert_series_equal(ts < ts, ts < df['A'],
check_names=False)
tm.assert_series_equal(ts / ts, ts / df['A'],
check_names=False)
class TestAdditionSubtraction(object):
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
# for non-timestamp/timedelta/period dtypes
# TODO: This came from series.test.test_operators, needs cleanup
def test_arith_ops_df_compat(self):
# GH#1134
s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x')
s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x')
exp = pd.Series([3.0, 4.0, np.nan, np.nan],
index=list('ABCD'), name='x')
tm.assert_series_equal(s1 + s2, exp)
tm.assert_series_equal(s2 + s1, exp)
exp = pd.DataFrame({'x': [3.0, 4.0, np.nan, np.nan]},
index=list('ABCD'))
tm.assert_frame_equal(s1.to_frame() + s2.to_frame(), exp)
tm.assert_frame_equal(s2.to_frame() + s1.to_frame(), exp)
# different length
s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x')
s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x')
exp = pd.Series([3, 4, 5, np.nan],
index=list('ABCD'), name='x')
tm.assert_series_equal(s3 + s4, exp)
tm.assert_series_equal(s4 + s3, exp)
exp = pd.DataFrame({'x': [3, 4, 5, np.nan]},
index=list('ABCD'))
tm.assert_frame_equal(s3.to_frame() + s4.to_frame(), exp)
tm.assert_frame_equal(s4.to_frame() + s3.to_frame(), exp)
# TODO: This came from series.test.test_operators, needs cleanup
def test_series_frame_radd_bug(self):
# GH#353
vals = pd.Series(tm.rands_array(5, 10))
result = 'foo_' + vals
expected = vals.map(lambda x: 'foo_' + x)
tm.assert_series_equal(result, expected)
frame = pd.DataFrame({'vals': vals})
result = 'foo_' + frame
expected = pd.DataFrame({'vals': vals.map(lambda x: 'foo_' + x)})
tm.assert_frame_equal(result, expected)
ts = tm.makeTimeSeries()
ts.name = 'ts'
# really raise this time
now = pd.Timestamp.now().to_pydatetime()
with pytest.raises(TypeError):
now + ts
with pytest.raises(TypeError):
ts + now
# TODO: This came from series.test.test_operators, needs cleanup
def test_datetime64_with_index(self):
# arithmetic integer ops with an index
ser = pd.Series(np.random.randn(5))
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
# GH#4629
# arithmetic datetime64 ops with an index
ser = pd.Series(pd.date_range('20130101', periods=5),
index=pd.date_range('20130101', periods=5))
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
with pytest.raises(TypeError):
# GH#18850
result = ser - ser.index.to_period()
df = pd.DataFrame(np.random.randn(5, 2),
index=pd.date_range('20130101', periods=5))
df['date'] = pd.Timestamp('20130102')
df['expected'] = df['date'] - df.index.to_series()
df['result'] = df['date'] - df.index
tm.assert_series_equal(df['result'], df['expected'], check_names=False)
# TODO: taken from tests.frame.test_operators, needs cleanup
def test_frame_operators(self):
seriesd = tm.getSeriesData()
frame = pd.DataFrame(seriesd)
frame2 = pd.DataFrame(seriesd, columns=['D', 'C', 'B', 'A'])
garbage = np.random.random(4)
colSeries = pd.Series(garbage, index=np.array(frame.columns))
idSum = frame + frame
seriesSum = frame + colSeries
for col, series in idSum.items():
for idx, val in series.items():
origVal = frame[col][idx] * 2
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
for col, series in seriesSum.items():
for idx, val in series.items():
origVal = frame[col][idx] + colSeries[col]
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
added = frame2 + frame2
expected = frame2 * 2
tm.assert_frame_equal(added, expected)
df = pd.DataFrame({'a': ['a', None, 'b']})
tm.assert_frame_equal(df + df,
pd.DataFrame({'a': ['aa', np.nan, 'bb']}))
# Test for issue #10181
for dtype in ('float', 'int64'):
frames = [
pd.DataFrame(dtype=dtype),
pd.DataFrame(columns=['A'], dtype=dtype),
pd.DataFrame(index=[0], dtype=dtype),
]
for df in frames:
assert (df + df).equals(df)
tm.assert_frame_equal(df + df, df)
# TODO: taken from tests.series.test_operators; needs cleanup
def test_series_operators(self):
def _check_op(series, other, op, pos_only=False, check_dtype=True):
left = np.abs(series) if pos_only else series
right = np.abs(other) if pos_only else other
cython_or_numpy = op(left, right)
python = left.combine(right, op)
tm.assert_series_equal(cython_or_numpy, python,
check_dtype=check_dtype)
def check(series, other):
simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod']
for opname in simple_ops:
_check_op(series, other, getattr(operator, opname))
_check_op(series, other, operator.pow, pos_only=True)
_check_op(series, other, lambda x, y: operator.add(y, x))
_check_op(series, other, lambda x, y: operator.sub(y, x))
_check_op(series, other, lambda x, y: operator.truediv(y, x))
_check_op(series, other, lambda x, y: operator.floordiv(y, x))
_check_op(series, other, lambda x, y: operator.mul(y, x))
_check_op(series, other, lambda x, y: operator.pow(y, x),
pos_only=True)
_check_op(series, other, lambda x, y: operator.mod(y, x))
tser = tm.makeTimeSeries().rename('ts')
check(tser, tser * 2)
check(tser, tser * 0)
check(tser, tser[::2])
check(tser, 5)
def check_comparators(series, other, check_dtype=True):
_check_op(series, other, operator.gt, check_dtype=check_dtype)
_check_op(series, other, operator.ge, check_dtype=check_dtype)
_check_op(series, other, operator.eq, check_dtype=check_dtype)
_check_op(series, other, operator.lt, check_dtype=check_dtype)
_check_op(series, other, operator.le, check_dtype=check_dtype)
check_comparators(tser, 5)
check_comparators(tser, tser + 1, check_dtype=False)
# TODO: taken from tests.series.test_operators; needs cleanup
def test_divmod(self):
def check(series, other):
results = divmod(series, other)
if isinstance(other, Iterable) and len(series) != len(other):
# if the lengths don't match, this is the test where we use
# `tser[::2]`. Pad every other value in `other_np` with nan.
other_np = []
for n in other:
other_np.append(n)
other_np.append(np.nan)
else:
other_np = other
other_np = np.asarray(other_np)
with np.errstate(all='ignore'):
expecteds = divmod(series.values, np.asarray(other_np))
for result, expected in zip(results, expecteds):
# check the values, name, and index separately
tm.assert_almost_equal(np.asarray(result), expected)
assert result.name == series.name
tm.assert_index_equal(result.index, series.index)
tser = tm.makeTimeSeries().rename('ts')
check(tser, tser * 2)
check(tser, tser * 0)
check(tser, tser[::2])
check(tser, 5)
class TestUFuncCompat(object):
@pytest.mark.parametrize('holder', [pd.Int64Index, pd.UInt64Index,
pd.Float64Index, pd.Series])
def test_ufunc_compat(self, holder):
box = pd.Series if holder is pd.Series else pd.Index
idx = holder(np.arange(5, dtype='int64'))
result = np.sin(idx)
expected = box(np.sin(np.arange(5, dtype='int64')))
tm.assert_equal(result, expected)
@pytest.mark.parametrize('holder', [pd.Int64Index, pd.UInt64Index,
pd.Float64Index, pd.Series])
def test_ufunc_coercions(self, holder):
idx = holder([1, 2, 3, 4, 5], name='x')
box = pd.Series if holder is pd.Series else pd.Index
result = np.sqrt(idx)
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index(np.sqrt(np.array([1, 2, 3, 4, 5])), name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = np.divide(idx, 2.)
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index([0.5, 1., 1.5, 2., 2.5], name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
# _evaluate_numeric_binop
result = idx + 2.
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index([3., 4., 5., 6., 7.], name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx - 2.
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index([-1., 0., 1., 2., 3.], name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx * 1.
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index([1., 2., 3., 4., 5.], name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx / 2.
assert result.dtype == 'f8' and isinstance(result, box)
exp = pd.Float64Index([0.5, 1., 1.5, 2., 2.5], name='x')
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
class TestObjectDtypeEquivalence(object):
# Tests that arithmetic operations match operations executed elementwise
@pytest.mark.parametrize('dtype', [None, object])
def test_numarr_with_dtype_add_nan(self, dtype, box):
ser = pd.Series([1, 2, 3], dtype=dtype)
expected = pd.Series([np.nan, np.nan, np.nan], dtype=dtype)
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = np.nan + ser
tm.assert_equal(result, expected)
result = ser + np.nan
tm.assert_equal(result, expected)
@pytest.mark.parametrize('dtype', [None, object])
def test_numarr_with_dtype_add_int(self, dtype, box):
ser = pd.Series([1, 2, 3], dtype=dtype)
expected = pd.Series([2, 3, 4], dtype=dtype)
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = 1 + ser
tm.assert_equal(result, expected)
result = ser + 1
tm.assert_equal(result, expected)
# TODO: moved from tests.series.test_operators; needs cleanup
@pytest.mark.parametrize('op', [operator.add, operator.sub, operator.mul,
operator.truediv, operator.floordiv])
def test_operators_reverse_object(self, op):
# GH#56
arr = pd.Series(np.random.randn(10), index=np.arange(10), dtype=object)
result = op(1., arr)
expected = op(1., arr.astype(float))
tm.assert_series_equal(result.astype(float), expected)