forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharray_ops.py
389 lines (312 loc) · 11.7 KB
/
array_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
Functions for arithmetic and comparison operations on NumPy arrays and
ExtensionArrays.
"""
from functools import partial
import operator
from typing import Any, Optional
import numpy as np
from pandas._libs import Timestamp, lib, ops as libops
from pandas._typing import ArrayLike
from pandas.core.dtypes.cast import (
construct_1d_object_array_from_listlike,
find_common_type,
maybe_upcast_putmask,
)
from pandas.core.dtypes.common import (
ensure_object,
is_bool_dtype,
is_integer_dtype,
is_list_like,
is_object_dtype,
is_scalar,
)
from pandas.core.dtypes.generic import (
ABCDatetimeArray,
ABCExtensionArray,
ABCIndex,
ABCIndexClass,
ABCSeries,
ABCTimedeltaArray,
)
from pandas.core.dtypes.missing import isna, notna
from pandas.core.ops import missing
from pandas.core.ops.dispatch import dispatch_to_extension_op, should_extension_dispatch
from pandas.core.ops.invalid import invalid_comparison
from pandas.core.ops.roperator import rpow
def comp_method_OBJECT_ARRAY(op, x, y):
if isinstance(y, list):
y = construct_1d_object_array_from_listlike(y)
# TODO: Should the checks below be ABCIndexClass?
if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)):
# TODO: should this be ABCIndexClass??
if not is_object_dtype(y.dtype):
y = y.astype(np.object_)
if isinstance(y, (ABCSeries, ABCIndex)):
y = y.values
result = libops.vec_compare(x.ravel(), y, op)
else:
result = libops.scalar_compare(x.ravel(), y, op)
return result.reshape(x.shape)
def masked_arith_op(x, y, op):
"""
If the given arithmetic operation fails, attempt it again on
only the non-null elements of the input array(s).
Parameters
----------
x : np.ndarray
y : np.ndarray, Series, Index
op : binary operator
"""
# For Series `x` is 1D so ravel() is a no-op; calling it anyway makes
# the logic valid for both Series and DataFrame ops.
xrav = x.ravel()
assert isinstance(x, np.ndarray), type(x)
if isinstance(y, np.ndarray):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)
# NB: ravel() is only safe since y is ndarray; for e.g. PeriodIndex
# we would get int64 dtype, see GH#19956
yrav = y.ravel()
mask = notna(xrav) & notna(yrav)
if yrav.shape != mask.shape:
# FIXME: GH#5284, GH#5035, GH#19448
# Without specifically raising here we get mismatched
# errors in Py3 (TypeError) vs Py2 (ValueError)
# Note: Only = an issue in DataFrame case
raise ValueError("Cannot broadcast operands together.")
if mask.any():
with np.errstate(all="ignore"):
result[mask] = op(xrav[mask], yrav[mask])
else:
if not is_scalar(y):
raise TypeError(
f"Cannot broadcast np.ndarray with operand of type { type(y) }"
)
# mask is only meaningful for x
result = np.empty(x.size, dtype=x.dtype)
mask = notna(xrav)
# 1 ** np.nan is 1. So we have to unmask those.
if op is pow:
mask = np.where(x == 1, False, mask)
elif op is rpow:
mask = np.where(y == 1, False, mask)
if mask.any():
with np.errstate(all="ignore"):
result[mask] = op(xrav[mask], y)
result, _ = maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape) # 2D compat
return result
def define_na_arithmetic_op(op, str_rep: str):
def na_op(x, y):
return na_arithmetic_op(x, y, op, str_rep)
return na_op
def na_arithmetic_op(left, right, op, str_rep: str):
"""
Return the result of evaluating op on the passed in values.
If native types are not compatible, try coersion to object dtype.
Parameters
----------
left : np.ndarray
right : np.ndarray or scalar
str_rep : str or None
Returns
-------
array-like
Raises
------
TypeError : invalid operation
"""
import pandas.core.computation.expressions as expressions
try:
result = expressions.evaluate(op, str_rep, left, right)
except TypeError:
result = masked_arith_op(left, right, op)
return missing.dispatch_fill_zeros(op, left, right, result)
def arithmetic_op(left: ArrayLike, right: Any, op, str_rep: str):
"""
Evaluate an arithmetic operation `+`, `-`, `*`, `/`, `//`, `%`, `**`, ...
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame or Index. Series is *not* excluded.
op : {operator.add, operator.sub, ...}
Or one of the reversed variants from roperator.
str_rep : str
Returns
-------
ndarrray or ExtensionArray
Or a 2-tuple of these in the case of divmod or rdivmod.
"""
from pandas.core.ops import maybe_upcast_for_op
# NB: We assume that extract_array has already been called
# on `left` and `right`.
lvalues = left
rvalues = right
rvalues = maybe_upcast_for_op(rvalues, lvalues.shape)
if should_extension_dispatch(left, rvalues) or isinstance(
rvalues, (ABCTimedeltaArray, ABCDatetimeArray, Timestamp)
):
# TimedeltaArray, DatetimeArray, and Timestamp are included here
# because they have `freq` attribute which is handled correctly
# by dispatch_to_extension_op.
res_values = dispatch_to_extension_op(op, lvalues, rvalues)
else:
with np.errstate(all="ignore"):
res_values = na_arithmetic_op(lvalues, rvalues, op, str_rep)
return res_values
def comparison_op(left: ArrayLike, right: Any, op) -> ArrayLike:
"""
Evaluate a comparison operation `=`, `!=`, `>=`, `>`, `<=`, or `<`.
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame, Series, or Index.
op : {operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le}
Returns
-------
ndarrray or ExtensionArray
"""
# NB: We assume extract_array has already been called on left and right
lvalues = left
rvalues = right
rvalues = lib.item_from_zerodim(rvalues)
if isinstance(rvalues, list):
# TODO: same for tuples?
rvalues = np.asarray(rvalues)
if isinstance(rvalues, (np.ndarray, ABCExtensionArray, ABCIndexClass)):
# TODO: make this treatment consistent across ops and classes.
# We are not catching all listlikes here (e.g. frozenset, tuple)
# The ambiguous case is object-dtype. See GH#27803
if len(lvalues) != len(rvalues):
raise ValueError("Lengths must match to compare")
if should_extension_dispatch(lvalues, rvalues):
res_values = dispatch_to_extension_op(op, lvalues, rvalues)
elif is_scalar(rvalues) and isna(rvalues):
# numpy does not like comparisons vs None
if op is operator.ne:
res_values = np.ones(lvalues.shape, dtype=bool)
else:
res_values = np.zeros(lvalues.shape, dtype=bool)
elif is_object_dtype(lvalues.dtype):
res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues)
else:
op_name = f"__{op.__name__}__"
method = getattr(lvalues, op_name)
with np.errstate(all="ignore"):
res_values = method(rvalues)
if res_values is NotImplemented:
res_values = invalid_comparison(lvalues, rvalues, op)
if is_scalar(res_values):
typ = type(rvalues)
raise TypeError(f"Could not compare {typ} type with Series")
return res_values
def na_logical_op(x: np.ndarray, y, op):
try:
# For exposition, write:
# yarr = isinstance(y, np.ndarray)
# yint = is_integer(y) or (yarr and y.dtype.kind == "i")
# ybool = is_bool(y) or (yarr and y.dtype.kind == "b")
# xint = x.dtype.kind == "i"
# xbool = x.dtype.kind == "b"
# Then Cases where this goes through without raising include:
# (xint or xbool) and (yint or bool)
result = op(x, y)
except TypeError:
if isinstance(y, np.ndarray):
# bool-bool dtype operations should be OK, should not get here
assert not (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype))
x = ensure_object(x)
y = ensure_object(y)
result = libops.vec_binop(x.ravel(), y.ravel(), op)
else:
# let null fall thru
assert lib.is_scalar(y)
if not isna(y):
y = bool(y)
try:
result = libops.scalar_binop(x, y, op)
except (
TypeError,
ValueError,
AttributeError,
OverflowError,
NotImplementedError,
):
typ = type(y).__name__
raise TypeError(
f"Cannot perform '{op.__name__}' with a dtyped [{x.dtype}] array "
f"and scalar of type [{typ}]"
)
return result.reshape(x.shape)
def logical_op(left: ArrayLike, right: Any, op) -> ArrayLike:
"""
Evaluate a logical operation `|`, `&`, or `^`.
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame, Series, or Index.
op : {operator.and_, operator.or_, operator.xor}
Or one of the reversed variants from roperator.
Returns
-------
ndarrray or ExtensionArray
"""
fill_int = lambda x: x
def fill_bool(x, left=None):
# if `left` is specifically not-boolean, we do not cast to bool
if x.dtype.kind in ["c", "f", "O"]:
# dtypes that can hold NA
mask = isna(x)
if mask.any():
x = x.astype(object)
x[mask] = False
if left is None or is_bool_dtype(left.dtype):
x = x.astype(bool)
return x
is_self_int_dtype = is_integer_dtype(left.dtype)
right = lib.item_from_zerodim(right)
if is_list_like(right) and not hasattr(right, "dtype"):
# e.g. list, tuple
right = construct_1d_object_array_from_listlike(right)
# NB: We assume extract_array has already been called on left and right
lvalues = left
rvalues = right
if should_extension_dispatch(lvalues, rvalues):
res_values = dispatch_to_extension_op(op, lvalues, rvalues)
else:
if isinstance(rvalues, np.ndarray):
is_other_int_dtype = is_integer_dtype(rvalues.dtype)
rvalues = rvalues if is_other_int_dtype else fill_bool(rvalues, lvalues)
else:
# i.e. scalar
is_other_int_dtype = lib.is_integer(rvalues)
# For int vs int `^`, `|`, `&` are bitwise operators and return
# integer dtypes. Otherwise these are boolean ops
filler = fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool
res_values = na_logical_op(lvalues, rvalues, op)
res_values = filler(res_values) # type: ignore
return res_values
def get_array_op(op, str_rep: Optional[str] = None):
"""
Return a binary array operation corresponding to the given operator op.
Parameters
----------
op : function
Binary operator from operator or roperator module.
str_rep : str or None, default None
str_rep to pass to arithmetic_op
Returns
-------
function
"""
op_name = op.__name__.strip("_")
if op_name in {"eq", "ne", "lt", "le", "gt", "ge"}:
return partial(comparison_op, op=op)
elif op_name in {"and", "or", "xor", "rand", "ror", "rxor"}:
return partial(logical_op, op=op)
else:
return partial(arithmetic_op, op=op, str_rep=str_rep)