forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_block_internals.py
421 lines (336 loc) · 14.3 KB
/
test_block_internals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from datetime import (
datetime,
timedelta,
)
from io import StringIO
import itertools
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Series,
Timestamp,
compat,
date_range,
option_context,
)
import pandas._testing as tm
from pandas.core.internals import (
NumericBlock,
ObjectBlock,
)
# Segregated collection of methods that require the BlockManager internal data
# structure
# TODO(ArrayManager) check which of those tests need to be rewritten to test the
# equivalent for ArrayManager
pytestmark = td.skip_array_manager_invalid_test
class TestDataFrameBlockInternals:
def test_setitem_invalidates_datetime_index_freq(self):
# GH#24096 altering a datetime64tz column inplace invalidates the
# `freq` attribute on the underlying DatetimeIndex
dti = date_range("20130101", periods=3, tz="US/Eastern")
ts = dti[1]
df = DataFrame({"B": dti})
assert df["B"]._values.freq is None
df.iloc[1, 0] = pd.NaT
assert df["B"]._values.freq is None
# check that the DatetimeIndex was not altered in place
assert dti.freq == "D"
assert dti[1] == ts
def test_cast_internals(self, float_frame):
casted = DataFrame(float_frame._mgr, dtype=int)
expected = DataFrame(float_frame._series, dtype=int)
tm.assert_frame_equal(casted, expected)
casted = DataFrame(float_frame._mgr, dtype=np.int32)
expected = DataFrame(float_frame._series, dtype=np.int32)
tm.assert_frame_equal(casted, expected)
def test_consolidate(self, float_frame):
float_frame["E"] = 7.0
consolidated = float_frame._consolidate()
assert len(consolidated._mgr.blocks) == 1
# Ensure copy, do I want this?
recons = consolidated._consolidate()
assert recons is not consolidated
tm.assert_frame_equal(recons, consolidated)
float_frame["F"] = 8.0
assert len(float_frame._mgr.blocks) == 3
return_value = float_frame._consolidate_inplace()
assert return_value is None
assert len(float_frame._mgr.blocks) == 1
def test_consolidate_inplace(self, float_frame):
frame = float_frame.copy() # noqa
# triggers in-place consolidation
for letter in range(ord("A"), ord("Z")):
float_frame[chr(letter)] = chr(letter)
def test_values_consolidate(self, float_frame):
float_frame["E"] = 7.0
assert not float_frame._mgr.is_consolidated()
_ = float_frame.values
assert float_frame._mgr.is_consolidated()
def test_modify_values(self, float_frame):
float_frame.values[5] = 5
assert (float_frame.values[5] == 5).all()
# unconsolidated
float_frame["E"] = 7.0
col = float_frame["E"]
float_frame.values[6] = 6
assert (float_frame.values[6] == 6).all()
# check that item_cache was cleared
assert float_frame["E"] is not col
assert (col == 7).all()
def test_boolean_set_uncons(self, float_frame):
float_frame["E"] = 7.0
expected = float_frame.values.copy()
expected[expected > 1] = 2
float_frame[float_frame > 1] = 2
tm.assert_almost_equal(expected, float_frame.values)
def test_constructor_with_convert(self):
# this is actually mostly a test of lib.maybe_convert_objects
# #2845
df = DataFrame({"A": [2 ** 63 - 1]})
result = df["A"]
expected = Series(np.asarray([2 ** 63 - 1], np.int64), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [2 ** 63]})
result = df["A"]
expected = Series(np.asarray([2 ** 63], np.uint64), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [datetime(2005, 1, 1), True]})
result = df["A"]
expected = Series(
np.asarray([datetime(2005, 1, 1), True], np.object_), name="A"
)
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [None, 1]})
result = df["A"]
expected = Series(np.asarray([np.nan, 1], np.float_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0, 2]})
result = df["A"]
expected = Series(np.asarray([1.0, 2], np.float_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0 + 2.0j, 3]})
result = df["A"]
expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0 + 2.0j, 3.0]})
result = df["A"]
expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0 + 2.0j, True]})
result = df["A"]
expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0, None]})
result = df["A"]
expected = Series(np.asarray([1.0, np.nan], np.float_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [1.0 + 2.0j, None]})
result = df["A"]
expected = Series(np.asarray([1.0 + 2.0j, np.nan], np.complex_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [2.0, 1, True, None]})
result = df["A"]
expected = Series(np.asarray([2.0, 1, True, None], np.object_), name="A")
tm.assert_series_equal(result, expected)
df = DataFrame({"A": [2.0, 1, datetime(2006, 1, 1), None]})
result = df["A"]
expected = Series(
np.asarray([2.0, 1, datetime(2006, 1, 1), None], np.object_), name="A"
)
tm.assert_series_equal(result, expected)
def test_construction_with_mixed(self, float_string_frame):
# test construction edge cases with mixed types
# f7u12, this does not work without extensive workaround
data = [
[datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
[datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
]
df = DataFrame(data)
# check dtypes
result = df.dtypes
expected = Series({"datetime64[ns]": 3})
# mixed-type frames
float_string_frame["datetime"] = datetime.now()
float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
assert float_string_frame["datetime"].dtype == "M8[ns]"
assert float_string_frame["timedelta"].dtype == "m8[ns]"
result = float_string_frame.dtypes
expected = Series(
[np.dtype("float64")] * 4
+ [
np.dtype("object"),
np.dtype("datetime64[ns]"),
np.dtype("timedelta64[ns]"),
],
index=list("ABCD") + ["foo", "datetime", "timedelta"],
)
tm.assert_series_equal(result, expected)
def test_construction_with_conversions(self):
# convert from a numpy array of non-ns timedelta64
arr = np.array([1, 2, 3], dtype="timedelta64[s]")
df = DataFrame(index=range(3))
df["A"] = arr
expected = DataFrame(
{"A": pd.timedelta_range("00:00:01", periods=3, freq="s")}, index=range(3)
)
tm.assert_frame_equal(df, expected)
expected = DataFrame(
{
"dt1": Timestamp("20130101"),
"dt2": date_range("20130101", periods=3),
# 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'),
},
index=range(3),
)
df = DataFrame(index=range(3))
df["dt1"] = np.datetime64("2013-01-01")
df["dt2"] = np.array(
["2013-01-01", "2013-01-02", "2013-01-03"], dtype="datetime64[D]"
)
# df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01
# 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')
tm.assert_frame_equal(df, expected)
def test_constructor_compound_dtypes(self):
# GH 5191
# compound dtypes should raise not-implementederror
def f(dtype):
data = list(itertools.repeat((datetime(2001, 1, 1), "aa", 20), 9))
return DataFrame(data=data, columns=["A", "B", "C"], dtype=dtype)
msg = "compound dtypes are not implemented in the DataFrame constructor"
with pytest.raises(NotImplementedError, match=msg):
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
# these work (though results may be unexpected)
depr_msg = "either all columns will be cast to that dtype, or a TypeError will"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
f("int64")
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
f("float64")
# 10822
# invalid error message on dt inference
if not compat.is_platform_windows():
f("M8[ns]")
def test_pickle(self, float_string_frame, timezone_frame):
empty_frame = DataFrame()
unpickled = tm.round_trip_pickle(float_string_frame)
tm.assert_frame_equal(float_string_frame, unpickled)
# buglet
float_string_frame._mgr.ndim
# empty
unpickled = tm.round_trip_pickle(empty_frame)
repr(unpickled)
# tz frame
unpickled = tm.round_trip_pickle(timezone_frame)
tm.assert_frame_equal(timezone_frame, unpickled)
def test_consolidate_datetime64(self):
# numpy vstack bug
data = (
"starting,ending,measure\n"
"2012-06-21 00:00,2012-06-23 07:00,77\n"
"2012-06-23 07:00,2012-06-23 16:30,65\n"
"2012-06-23 16:30,2012-06-25 08:00,77\n"
"2012-06-25 08:00,2012-06-26 12:00,0\n"
"2012-06-26 12:00,2012-06-27 08:00,77\n"
)
df = pd.read_csv(StringIO(data), parse_dates=[0, 1])
ser_starting = df.starting
ser_starting.index = ser_starting.values
ser_starting = ser_starting.tz_localize("US/Eastern")
ser_starting = ser_starting.tz_convert("UTC")
ser_starting.index.name = "starting"
ser_ending = df.ending
ser_ending.index = ser_ending.values
ser_ending = ser_ending.tz_localize("US/Eastern")
ser_ending = ser_ending.tz_convert("UTC")
ser_ending.index.name = "ending"
df.starting = ser_starting.index
df.ending = ser_ending.index
tm.assert_index_equal(pd.DatetimeIndex(df.starting), ser_starting.index)
tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index)
def test_is_mixed_type(self, float_frame, float_string_frame):
assert not float_frame._is_mixed_type
assert float_string_frame._is_mixed_type
def test_stale_cached_series_bug_473(self):
# this is chained, but ok
with option_context("chained_assignment", None):
Y = DataFrame(
np.random.random((4, 4)),
index=("a", "b", "c", "d"),
columns=("e", "f", "g", "h"),
)
repr(Y)
Y["e"] = Y["e"].astype("object")
Y["g"]["c"] = np.NaN
repr(Y)
result = Y.sum() # noqa
exp = Y["g"].sum() # noqa
assert pd.isna(Y["g"]["c"])
def test_strange_column_corruption_issue(self):
# FIXME: dont leave commented-out
# (wesm) Unclear how exactly this is related to internal matters
df = DataFrame(index=[0, 1])
df[0] = np.nan
wasCol = {}
with tm.assert_produces_warning(PerformanceWarning):
for i, dt in enumerate(df.index):
for col in range(100, 200):
if col not in wasCol:
wasCol[col] = 1
df[col] = np.nan
df[col][dt] = i
myid = 100
first = len(df.loc[pd.isna(df[myid]), [myid]])
second = len(df.loc[pd.isna(df[myid]), [myid]])
assert first == second == 0
def test_constructor_no_pandas_array(self):
# Ensure that PandasArray isn't allowed inside Series
# See https://github.com/pandas-dev/pandas/issues/23995 for more.
arr = Series([1, 2, 3]).array
result = DataFrame({"A": arr})
expected = DataFrame({"A": [1, 2, 3]})
tm.assert_frame_equal(result, expected)
assert isinstance(result._mgr.blocks[0], NumericBlock)
def test_add_column_with_pandas_array(self):
# GH 26390
df = DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"]})
df["c"] = pd.arrays.PandasArray(np.array([1, 2, None, 3], dtype=object))
df2 = DataFrame(
{
"a": [1, 2, 3, 4],
"b": ["a", "b", "c", "d"],
"c": pd.arrays.PandasArray(np.array([1, 2, None, 3], dtype=object)),
}
)
assert type(df["c"]._mgr.blocks[0]) == ObjectBlock
assert type(df2["c"]._mgr.blocks[0]) == ObjectBlock
tm.assert_frame_equal(df, df2)
def test_update_inplace_sets_valid_block_values():
# https://github.com/pandas-dev/pandas/issues/33457
df = DataFrame({"a": Series([1, 2, None], dtype="category")})
# inplace update of a single column
df["a"].fillna(1, inplace=True)
# check we haven't put a Series into any block.values
assert isinstance(df._mgr.blocks[0].values, Categorical)
# smoketest for OP bug from GH#35731
assert df.isnull().sum().sum() == 0
def test_nonconsolidated_item_cache_take():
# https://github.com/pandas-dev/pandas/issues/35521
# create non-consolidated dataframe with object dtype columns
df = DataFrame()
df["col1"] = Series(["a"], dtype=object)
df["col2"] = Series([0], dtype=object)
# access column (item cache)
df["col1"] == "A"
# take operation
# (regression was that this consolidated but didn't reset item cache,
# resulting in an invalid cache and the .at operation not working properly)
df[df["col2"] == 0]
# now setting value should update actual dataframe
df.at[0, "col1"] = "A"
expected = DataFrame({"col1": ["A"], "col2": [0]}, dtype=object)
tm.assert_frame_equal(df, expected)
assert df.at[0, "col1"] == "A"