forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathparquet.py
283 lines (225 loc) · 9.39 KB
/
parquet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
""" parquet compat """
from distutils.version import LooseVersion
from warnings import catch_warnings
from pandas.compat import string_types
from pandas.errors import AbstractMethodError
from pandas import DataFrame, get_option
from pandas.io.common import get_filepath_or_buffer, is_s3_url
def get_engine(engine):
""" return our implementation """
if engine == 'auto':
engine = get_option('io.parquet.engine')
if engine == 'auto':
# try engines in this order
try:
return PyArrowImpl()
except ImportError:
pass
try:
return FastParquetImpl()
except ImportError:
pass
raise ImportError("Unable to find a usable engine; "
"tried using: 'pyarrow', 'fastparquet'.\n"
"pyarrow or fastparquet is required for parquet "
"support")
if engine not in ['pyarrow', 'fastparquet']:
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
if engine == 'pyarrow':
return PyArrowImpl()
elif engine == 'fastparquet':
return FastParquetImpl()
class BaseImpl(object):
api = None # module
@staticmethod
def validate_dataframe(df):
if not isinstance(df, DataFrame):
raise ValueError("to_parquet only supports IO with DataFrames")
# must have value column names (strings only)
if df.columns.inferred_type not in {'string', 'unicode'}:
raise ValueError("parquet must have string column names")
# index level names must be strings
valid_names = all(
isinstance(name, string_types)
for name in df.index.names
if name is not None
)
if not valid_names:
raise ValueError("Index level names must be strings")
def write(self, df, path, compression, **kwargs):
raise AbstractMethodError(self)
def read(self, path, columns=None, **kwargs):
raise AbstractMethodError(self)
class PyArrowImpl(BaseImpl):
def __init__(self):
# since pandas is a dependency of pyarrow
# we need to import on first use
try:
import pyarrow
import pyarrow.parquet
except ImportError:
raise ImportError(
"pyarrow is required for parquet support\n\n"
"you can install via conda\n"
"conda install pyarrow -c conda-forge\n"
"\nor via pip\n"
"pip install -U pyarrow\n"
)
if LooseVersion(pyarrow.__version__) < '0.7.0':
raise ImportError(
"pyarrow >= 0.7.0 is required for parquet support\n\n"
"you can install via conda\n"
"conda install pyarrow -c conda-forge\n"
"\nor via pip\n"
"pip install -U pyarrow\n"
)
self.api = pyarrow
def write(self, df, path, compression='snappy',
coerce_timestamps='ms', index=None, partition_cols=None,
**kwargs):
self.validate_dataframe(df)
path, _, _, _ = get_filepath_or_buffer(path, mode='wb')
if index is None:
from_pandas_kwargs = {}
else:
from_pandas_kwargs = {'preserve_index': index}
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
if partition_cols is not None:
self.api.parquet.write_to_dataset(
table, path, compression=compression,
coerce_timestamps=coerce_timestamps,
partition_cols=partition_cols, **kwargs)
else:
self.api.parquet.write_table(
table, path, compression=compression,
coerce_timestamps=coerce_timestamps, **kwargs)
def read(self, path, columns=None, **kwargs):
path, _, _, should_close = get_filepath_or_buffer(path)
kwargs['use_pandas_metadata'] = True
result = self.api.parquet.read_table(path, columns=columns,
**kwargs).to_pandas()
if should_close:
try:
path.close()
except: # noqa: flake8
pass
return result
class FastParquetImpl(BaseImpl):
def __init__(self):
# since pandas is a dependency of fastparquet
# we need to import on first use
try:
import fastparquet
except ImportError:
raise ImportError(
"fastparquet is required for parquet support\n\n"
"you can install via conda\n"
"conda install fastparquet -c conda-forge\n"
"\nor via pip\n"
"pip install -U fastparquet"
)
if LooseVersion(fastparquet.__version__) < '0.1.2':
raise ImportError(
"fastparquet >= 0.1.2 is required for parquet "
"support\n\n"
"you can install via conda\n"
"conda install fastparquet -c conda-forge\n"
"\nor via pip\n"
"pip install -U fastparquet"
)
self.api = fastparquet
def write(self, df, path, compression='snappy', index=None,
partition_cols=None, **kwargs):
self.validate_dataframe(df)
# thriftpy/protocol/compact.py:339:
# DeprecationWarning: tostring() is deprecated.
# Use tobytes() instead.
if 'partition_on' in kwargs and partition_cols is not None:
raise ValueError("Cannot use both partition_on and "
"partition_cols. Use partition_cols for "
"partitioning data")
elif 'partition_on' in kwargs:
partition_cols = kwargs.pop('partition_on')
if partition_cols is not None:
kwargs['file_scheme'] = 'hive'
if is_s3_url(path):
# path is s3:// so we need to open the s3file in 'wb' mode.
# TODO: Support 'ab'
path, _, _, _ = get_filepath_or_buffer(path, mode='wb')
# And pass the opened s3file to the fastparquet internal impl.
kwargs['open_with'] = lambda path, _: path
else:
path, _, _, _ = get_filepath_or_buffer(path)
with catch_warnings(record=True):
self.api.write(path, df, compression=compression,
write_index=index, partition_on=partition_cols,
**kwargs)
def read(self, path, columns=None, **kwargs):
if is_s3_url(path):
# When path is s3:// an S3File is returned.
# We need to retain the original path(str) while also
# pass the S3File().open function to fsatparquet impl.
s3, _, _, should_close = get_filepath_or_buffer(path)
try:
parquet_file = self.api.ParquetFile(path, open_with=s3.s3.open)
finally:
s3.close()
else:
path, _, _, _ = get_filepath_or_buffer(path)
parquet_file = self.api.ParquetFile(path)
return parquet_file.to_pandas(columns=columns, **kwargs)
def to_parquet(df, path, engine='auto', compression='snappy', index=None,
partition_cols=None, **kwargs):
"""
Write a DataFrame to the parquet format.
Parameters
----------
path : str
File path or Root Directory path. Will be used as Root Directory path
while writing a partitioned dataset.
.. versionchanged:: 0.24.0
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output. If
``False``, they will not be written to the file. If ``None``, the
engine's default behavior will be used.
.. versionadded 0.24.0
partition_cols : list, optional, default None
Column names by which to partition the dataset
Columns are partitioned in the order they are given
.. versionadded:: 0.24.0
kwargs
Additional keyword arguments passed to the engine
"""
impl = get_engine(engine)
return impl.write(df, path, compression=compression, index=index,
partition_cols=partition_cols, **kwargs)
def read_parquet(path, engine='auto', columns=None, **kwargs):
"""
Load a parquet object from the file path, returning a DataFrame.
.. versionadded 0.21.0
Parameters
----------
path : string
File path
columns: list, default=None
If not None, only these columns will be read from the file.
.. versionadded 0.21.1
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
kwargs are passed to the engine
Returns
-------
DataFrame
"""
impl = get_engine(engine)
return impl.read(path, columns=columns, **kwargs)