forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconversion.pyx
1250 lines (1036 loc) · 36.8 KB
/
conversion.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# cython: profile=False
cimport cython
from cython cimport Py_ssize_t
import numpy as np
cimport numpy as cnp
from numpy cimport int64_t, int32_t, ndarray
cnp.import_array()
import pytz
# stdlib datetime imports
from datetime import time as datetime_time
from cpython.datetime cimport (datetime, tzinfo,
PyDateTime_Check, PyDate_Check,
PyDateTime_CheckExact, PyDateTime_IMPORT)
PyDateTime_IMPORT
from np_datetime cimport (check_dts_bounds,
npy_datetimestruct,
pandas_datetime_to_datetimestruct, _string_to_dts,
npy_datetime,
dt64_to_dtstruct, dtstruct_to_dt64,
get_datetime64_unit, get_datetime64_value,
pydatetime_to_dt64, NPY_DATETIMEUNIT, NPY_FR_ns)
from np_datetime import OutOfBoundsDatetime
from util cimport (is_string_object,
is_datetime64_object,
is_integer_object, is_float_object, is_array)
from timedeltas cimport cast_from_unit
from timezones cimport (is_utc, is_tzlocal, is_fixed_offset,
treat_tz_as_dateutil, treat_tz_as_pytz,
get_utcoffset, get_dst_info,
get_timezone, maybe_get_tz, tz_compare)
from parsing import parse_datetime_string
from nattype import nat_strings, NaT
from nattype cimport NPY_NAT, checknull_with_nat
# ----------------------------------------------------------------------
# Constants
cdef int64_t DAY_NS = 86400000000000LL
NS_DTYPE = np.dtype('M8[ns]')
TD_DTYPE = np.dtype('m8[ns]')
UTC = pytz.UTC
# ----------------------------------------------------------------------
# Misc Helpers
# TODO: How to declare np.datetime64 as the input type?
cdef inline int64_t get_datetime64_nanos(object val) except? -1:
"""
Extract the value and unit from a np.datetime64 object, then convert the
value to nanoseconds if necessary.
"""
cdef:
npy_datetimestruct dts
NPY_DATETIMEUNIT unit
npy_datetime ival
unit = get_datetime64_unit(val)
ival = get_datetime64_value(val)
if unit != NPY_FR_ns:
pandas_datetime_to_datetimestruct(ival, unit, &dts)
check_dts_bounds(&dts)
ival = dtstruct_to_dt64(&dts)
return ival
def ensure_datetime64ns(ndarray arr, copy=True):
"""
Ensure a np.datetime64 array has dtype specifically 'datetime64[ns]'
Parameters
----------
arr : ndarray
copy : boolean, default True
Returns
-------
result : ndarray with dtype datetime64[ns]
"""
cdef:
Py_ssize_t i, n = arr.size
int64_t[:] ivalues, iresult
NPY_DATETIMEUNIT unit
npy_datetimestruct dts
shape = (<object> arr).shape
ivalues = arr.view(np.int64).ravel()
result = np.empty(shape, dtype='M8[ns]')
iresult = result.ravel().view(np.int64)
if len(iresult) == 0:
return result
unit = get_datetime64_unit(arr.flat[0])
if unit == NPY_FR_ns:
if copy:
arr = arr.copy()
result = arr
else:
for i in range(n):
if ivalues[i] != NPY_NAT:
pandas_datetime_to_datetimestruct(ivalues[i], unit, &dts)
iresult[i] = dtstruct_to_dt64(&dts)
check_dts_bounds(&dts)
else:
iresult[i] = NPY_NAT
return result
def ensure_timedelta64ns(ndarray arr, copy=True):
"""
Ensure a np.timedelta64 array has dtype specifically 'timedelta64[ns]'
Parameters
----------
arr : ndarray
copy : boolean, default True
Returns
-------
result : ndarray with dtype timedelta64[ns]
"""
return arr.astype(TD_DTYPE, copy=copy)
def datetime_to_datetime64(object[:] values):
"""
Convert ndarray of datetime-like objects to int64 array representing
nanosecond timestamps.
Parameters
----------
values : ndarray
Returns
-------
result : ndarray with dtype int64
inferred_tz : tzinfo or None
"""
cdef:
Py_ssize_t i, n = len(values)
object val, inferred_tz = None
int64_t[:] iresult
npy_datetimestruct dts
_TSObject _ts
result = np.empty(n, dtype='M8[ns]')
iresult = result.view('i8')
for i in range(n):
val = values[i]
if checknull_with_nat(val):
iresult[i] = NPY_NAT
elif PyDateTime_Check(val):
if val.tzinfo is not None:
if inferred_tz is not None:
if not tz_compare(val.tzinfo, inferred_tz):
raise ValueError('Array must be all same time zone')
else:
inferred_tz = get_timezone(val.tzinfo)
_ts = convert_datetime_to_tsobject(val, None)
iresult[i] = _ts.value
check_dts_bounds(&_ts.dts)
else:
if inferred_tz is not None:
raise ValueError('Cannot mix tz-aware with '
'tz-naive values')
iresult[i] = pydatetime_to_dt64(val, &dts)
check_dts_bounds(&dts)
else:
raise TypeError('Unrecognized value type: %s' % type(val))
return result, inferred_tz
cdef inline maybe_datetimelike_to_i8(object val):
"""
Try to convert to a nanosecond timestamp. Fall back to returning the
input value.
Parameters
----------
val : object
Returns
-------
val : int64 timestamp or original input
"""
cdef:
npy_datetimestruct dts
try:
return val.value
except AttributeError:
if is_datetime64_object(val):
return get_datetime64_value(val)
elif PyDateTime_Check(val):
return convert_datetime_to_tsobject(val, None).value
return val
# ----------------------------------------------------------------------
# _TSObject Conversion
# lightweight C object to hold datetime & int64 pair
cdef class _TSObject:
# cdef:
# npy_datetimestruct dts # npy_datetimestruct
# int64_t value # numpy dt64
# object tzinfo
@property
def value(self):
return self.value
cpdef int64_t pydt_to_i8(object pydt) except? -1:
"""
Convert to int64 representation compatible with numpy datetime64; converts
to UTC
Parameters
----------
pydt : object
Returns
-------
i8value : np.int64
"""
cdef:
_TSObject ts
ts = convert_to_tsobject(pydt, None, None, 0, 0)
return ts.value
cdef convert_to_tsobject(object ts, object tz, object unit,
bint dayfirst, bint yearfirst, int32_t nanos=0):
"""
Extract datetime and int64 from any of:
- np.int64 (with unit providing a possible modifier)
- np.datetime64
- a float (with unit providing a possible modifier)
- python int or long object (with unit providing a possible modifier)
- iso8601 string object
- python datetime object
- another timestamp object
"""
cdef:
_TSObject obj
if tz is not None:
tz = maybe_get_tz(tz)
obj = _TSObject()
if is_string_object(ts):
return convert_str_to_tsobject(ts, tz, unit, dayfirst, yearfirst)
if ts is None or ts is NaT:
obj.value = NPY_NAT
elif is_datetime64_object(ts):
if ts.view('i8') == NPY_NAT:
obj.value = NPY_NAT
else:
obj.value = get_datetime64_nanos(ts)
dt64_to_dtstruct(obj.value, &obj.dts)
elif is_integer_object(ts):
if ts == NPY_NAT:
obj.value = NPY_NAT
else:
ts = ts * cast_from_unit(None, unit)
obj.value = ts
dt64_to_dtstruct(ts, &obj.dts)
elif is_float_object(ts):
if ts != ts or ts == NPY_NAT:
obj.value = NPY_NAT
else:
ts = cast_from_unit(ts, unit)
obj.value = ts
dt64_to_dtstruct(ts, &obj.dts)
elif PyDateTime_Check(ts):
return convert_datetime_to_tsobject(ts, tz, nanos)
elif PyDate_Check(ts):
# Keep the converter same as PyDateTime's
ts = datetime.combine(ts, datetime_time())
return convert_datetime_to_tsobject(ts, tz)
elif getattr(ts, '_typ', None) == 'period':
raise ValueError("Cannot convert Period to Timestamp "
"unambiguously. Use to_timestamp")
else:
raise TypeError('Cannot convert input [{}] of type {} to '
'Timestamp'.format(ts, type(ts)))
if tz is not None:
localize_tso(obj, tz)
if obj.value != NPY_NAT:
# check_overflows needs to run after localize_tso
check_dts_bounds(&obj.dts)
check_overflows(obj)
return obj
cdef _TSObject convert_datetime_to_tsobject(datetime ts, object tz,
int32_t nanos=0):
"""
Convert a datetime (or Timestamp) input `ts`, along with optional timezone
object `tz` to a _TSObject.
The optional argument `nanos` allows for cases where datetime input
needs to be supplemented with higher-precision information.
Parameters
----------
ts : datetime or Timestamp
Value to be converted to _TSObject
tz : tzinfo or None
timezone for the timezone-aware output
nanos : int32_t, default is 0
nanoseconds supplement the precision of the datetime input ts
Returns
-------
obj : _TSObject
"""
cdef:
_TSObject obj = _TSObject()
if tz is not None:
tz = maybe_get_tz(tz)
if ts.tzinfo is not None:
# Convert the current timezone to the passed timezone
ts = ts.astimezone(tz)
obj.value = pydatetime_to_dt64(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
elif not is_utc(tz):
ts = _localize_pydatetime(ts, tz)
obj.value = pydatetime_to_dt64(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
else:
# UTC
obj.value = pydatetime_to_dt64(ts, &obj.dts)
obj.tzinfo = pytz.utc
else:
obj.value = pydatetime_to_dt64(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
if obj.tzinfo is not None and not is_utc(obj.tzinfo):
offset = get_utcoffset(obj.tzinfo, ts)
obj.value -= int(offset.total_seconds() * 1e9)
if not PyDateTime_CheckExact(ts):
# datetime instance but not datetime type --> Timestamp
obj.value += ts.nanosecond
obj.dts.ps = ts.nanosecond * 1000
if nanos:
obj.value += nanos
obj.dts.ps = nanos * 1000
check_dts_bounds(&obj.dts)
check_overflows(obj)
return obj
cdef _TSObject convert_str_to_tsobject(object ts, object tz, object unit,
bint dayfirst=False,
bint yearfirst=False):
"""
Convert a string-like (bytes or unicode) input `ts`, along with optional
timezone object `tz` to a _TSObject.
The optional arguments `dayfirst` and `yearfirst` are passed to the
dateutil parser.
Parameters
----------
ts : bytes or unicode
Value to be converted to _TSObject
tz : tzinfo or None
timezone for the timezone-aware output
dayfirst : bool, default False
When parsing an ambiguous date string, interpret e.g. "3/4/1975" as
April 3, as opposed to the standard US interpretation March 4.
yearfirst : bool, default False
When parsing an ambiguous date string, interpret e.g. "01/05/09"
as "May 9, 2001", as opposed to the default "Jan 5, 2009"
Returns
-------
obj : _TSObject
"""
cdef:
_TSObject obj
int out_local = 0, out_tzoffset = 0
datetime dt
if tz is not None:
tz = maybe_get_tz(tz)
obj = _TSObject()
assert is_string_object(ts)
if len(ts) == 0 or ts in nat_strings:
ts = NaT
elif ts == 'now':
# Issue 9000, we short-circuit rather than going
# into np_datetime_strings which returns utc
ts = datetime.now(tz)
elif ts == 'today':
# Issue 9000, we short-circuit rather than going
# into np_datetime_strings which returns a normalized datetime
ts = datetime.now(tz)
# equiv: datetime.today().replace(tzinfo=tz)
else:
try:
_string_to_dts(ts, &obj.dts, &out_local, &out_tzoffset)
obj.value = dtstruct_to_dt64(&obj.dts)
check_dts_bounds(&obj.dts)
if out_local == 1:
obj.tzinfo = pytz.FixedOffset(out_tzoffset)
obj.value = tz_convert_single(obj.value, obj.tzinfo, 'UTC')
if tz is None:
check_dts_bounds(&obj.dts)
check_overflows(obj)
return obj
else:
# Keep the converter same as PyDateTime's
obj = convert_to_tsobject(obj.value, obj.tzinfo,
None, 0, 0)
dt = datetime(obj.dts.year, obj.dts.month, obj.dts.day,
obj.dts.hour, obj.dts.min, obj.dts.sec,
obj.dts.us, obj.tzinfo)
obj = convert_datetime_to_tsobject(dt, tz,
nanos=obj.dts.ps / 1000)
return obj
else:
ts = obj.value
if tz is not None:
# shift for localize_tso
ts = tz_localize_to_utc(np.array([ts], dtype='i8'), tz,
ambiguous='raise',
errors='raise')[0]
except OutOfBoundsDatetime:
# GH#19382 for just-barely-OutOfBounds falling back to dateutil
# parser will return incorrect result because it will ignore
# nanoseconds
raise
except ValueError:
try:
ts = parse_datetime_string(ts, dayfirst=dayfirst,
yearfirst=yearfirst)
except Exception:
raise ValueError("could not convert string to Timestamp")
return convert_to_tsobject(ts, tz, unit, dayfirst, yearfirst)
cdef inline check_overflows(_TSObject obj):
"""
Check that we haven't silently overflowed in timezone conversion
Parameters
----------
obj : _TSObject
Returns
-------
None
Raises
------
OutOfBoundsDatetime
"""
# GH#12677
if obj.dts.year == 1677:
if not (obj.value < 0):
raise OutOfBoundsDatetime
elif obj.dts.year == 2262:
if not (obj.value > 0):
raise OutOfBoundsDatetime
# ----------------------------------------------------------------------
# Localization
cdef inline void localize_tso(_TSObject obj, tzinfo tz):
"""
Given the UTC nanosecond timestamp in obj.value, find the wall-clock
representation of that timestamp in the given timezone.
Parameters
----------
obj : _TSObject
tz : tzinfo
Returns
-------
None
Notes
-----
Sets obj.tzinfo inplace, alters obj.dts inplace.
"""
cdef:
ndarray[int64_t] trans
int64_t[:] deltas
int64_t local_val
Py_ssize_t pos
assert obj.tzinfo is None
if is_utc(tz):
pass
elif obj.value == NPY_NAT:
pass
elif is_tzlocal(tz):
local_val = _tz_convert_tzlocal_utc(obj.value, tz, to_utc=False)
dt64_to_dtstruct(local_val, &obj.dts)
else:
# Adjust datetime64 timestamp, recompute datetimestruct
trans, deltas, typ = get_dst_info(tz)
if is_fixed_offset(tz):
# static/fixed tzinfo; in this case we know len(deltas) == 1
# This can come back with `typ` of either "fixed" or None
dt64_to_dtstruct(obj.value + deltas[0], &obj.dts)
elif typ == 'pytz':
# i.e. treat_tz_as_pytz(tz)
pos = trans.searchsorted(obj.value, side='right') - 1
tz = tz._tzinfos[tz._transition_info[pos]]
dt64_to_dtstruct(obj.value + deltas[pos], &obj.dts)
elif typ == 'dateutil':
# i.e. treat_tz_as_dateutil(tz)
pos = trans.searchsorted(obj.value, side='right') - 1
dt64_to_dtstruct(obj.value + deltas[pos], &obj.dts)
else:
# Note: as of 2018-07-17 all tzinfo objects that are _not_
# either pytz or dateutil have is_fixed_offset(tz) == True,
# so this branch will never be reached.
pass
obj.tzinfo = tz
cdef inline datetime _localize_pydatetime(datetime dt, tzinfo tz):
"""
Take a datetime/Timestamp in UTC and localizes to timezone tz.
NB: Unlike the public version, this treats datetime and Timestamp objects
identically, i.e. discards nanos from Timestamps.
It also assumes that the `tz` input is not None.
"""
if tz == 'UTC' or tz is UTC:
return UTC.localize(dt)
try:
# datetime.replace with pytz may be incorrect result
return tz.localize(dt)
except AttributeError:
return dt.replace(tzinfo=tz)
cpdef inline datetime localize_pydatetime(datetime dt, object tz):
"""
Take a datetime/Timestamp in UTC and localizes to timezone tz.
Parameters
----------
dt : datetime or Timestamp
tz : tzinfo, "UTC", or None
Returns
-------
localized : datetime or Timestamp
"""
if tz is None:
return dt
elif not PyDateTime_CheckExact(dt):
# i.e. is a Timestamp
return dt.tz_localize(tz)
elif tz == 'UTC' or tz is UTC:
return UTC.localize(dt)
try:
# datetime.replace with pytz may be incorrect result
return tz.localize(dt)
except AttributeError:
return dt.replace(tzinfo=tz)
# ----------------------------------------------------------------------
# Timezone Conversion
cdef inline int64_t[:] _tz_convert_dst(ndarray[int64_t] values, tzinfo tz,
bint to_utc=True):
"""
tz_convert for non-UTC non-tzlocal cases where we have to check
DST transitions pointwise.
Parameters
----------
values : ndarray[int64_t]
tz : tzinfo
to_utc : bool
True if converting _to_ UTC, False if converting _from_ utc
Returns
-------
result : ndarray[int64_t]
"""
cdef:
Py_ssize_t n = len(values)
Py_ssize_t i, j, pos
int64_t[:] result = np.empty(n, dtype=np.int64)
ndarray[int64_t] tt, trans
int64_t[:] deltas
Py_ssize_t[:] posn
int64_t v
trans, deltas, typ = get_dst_info(tz)
if not to_utc:
# We add `offset` below instead of subtracting it
deltas = -1 * np.array(deltas, dtype='i8')
tt = values[values != NPY_NAT]
if not len(tt):
# if all NaT, return all NaT
return values
posn = trans.searchsorted(tt, side='right')
j = 0
for i in range(n):
v = values[i]
if v == NPY_NAT:
result[i] = v
else:
pos = posn[j] - 1
j += 1
if pos < 0:
raise ValueError('First time before start of DST info')
result[i] = v - deltas[pos]
return result
cdef inline int64_t _tz_convert_tzlocal_utc(int64_t val, tzinfo tz,
bint to_utc=True):
"""
Convert the i8 representation of a datetime from a tzlocal timezone to
UTC, or vice-versa.
Private, not intended for use outside of tslibs.conversion
Parameters
----------
val : int64_t
tz : tzinfo
to_utc : bint
True if converting tzlocal _to_ UTC, False if going the other direction
Returns
-------
result : int64_t
"""
cdef:
npy_datetimestruct dts
int64_t result, delta
datetime dt
dt64_to_dtstruct(val, &dts)
dt = datetime(dts.year, dts.month, dts.day, dts.hour,
dts.min, dts.sec, dts.us, tz)
delta = int(get_utcoffset(tz, dt).total_seconds()) * 1000000000
if not to_utc:
return val + delta
return val - delta
cdef inline int64_t tz_convert_utc_to_tzlocal(int64_t utc_val, tzinfo tz):
"""
Parameters
----------
utc_val : int64_t
tz : tzinfo
Returns
-------
local_val : int64_t
"""
return _tz_convert_tzlocal_utc(utc_val, tz, to_utc=False)
cpdef int64_t tz_convert_single(int64_t val, object tz1, object tz2):
"""
Convert the val (in i8) from timezone1 to timezone2
This is a single timezone version of tz_convert
Parameters
----------
val : int64
tz1 : string / timezone object
tz2 : string / timezone object
Returns
-------
converted: int64
"""
cdef:
int64_t[:] deltas
Py_ssize_t pos
int64_t v, offset, utc_date
npy_datetimestruct dts
ndarray[int64_t] arr # TODO: Is there a lighter-weight way to do this?
# See GH#17734 We should always be converting either from UTC or to UTC
assert (is_utc(tz1) or tz1 == 'UTC') or (is_utc(tz2) or tz2 == 'UTC')
if val == NPY_NAT:
return val
# Convert to UTC
if is_tzlocal(tz1):
utc_date = _tz_convert_tzlocal_utc(val, tz1, to_utc=True)
elif get_timezone(tz1) != 'UTC':
arr = np.array([val])
utc_date = _tz_convert_dst(arr, tz1, to_utc=True)[0]
else:
utc_date = val
if get_timezone(tz2) == 'UTC':
return utc_date
elif is_tzlocal(tz2):
return _tz_convert_tzlocal_utc(utc_date, tz2, to_utc=False)
else:
# Convert UTC to other timezone
arr = np.array([utc_date])
# Note: at least with cython 0.28.3, doing a lookup `[0]` in the next
# line is sensitive to the declared return type of _tz_convert_dst;
# if it is declared as returning ndarray[int64_t], a compile-time error
# is raised.
return _tz_convert_dst(arr, tz2, to_utc=False)[0]
@cython.boundscheck(False)
@cython.wraparound(False)
def tz_convert(ndarray[int64_t] vals, object tz1, object tz2):
"""
Convert the values (in i8) from timezone1 to timezone2
Parameters
----------
vals : int64 ndarray
tz1 : string / timezone object
tz2 : string / timezone object
Returns
-------
int64 ndarray of converted
"""
cdef:
ndarray[int64_t] utc_dates, result
Py_ssize_t i, j, pos, n = len(vals)
int64_t v
if len(vals) == 0:
return np.array([], dtype=np.int64)
# Convert to UTC
if get_timezone(tz1) != 'UTC':
utc_dates = np.empty(n, dtype=np.int64)
if is_tzlocal(tz1):
for i in range(n):
v = vals[i]
if v == NPY_NAT:
utc_dates[i] = NPY_NAT
else:
utc_dates[i] = _tz_convert_tzlocal_utc(v, tz1, to_utc=True)
else:
utc_dates = np.array(_tz_convert_dst(vals, tz1, to_utc=True))
else:
utc_dates = vals
if get_timezone(tz2) == 'UTC':
return utc_dates
elif is_tzlocal(tz2):
result = np.zeros(n, dtype=np.int64)
for i in range(n):
v = utc_dates[i]
if v == NPY_NAT:
result[i] = NPY_NAT
else:
result[i] = _tz_convert_tzlocal_utc(v, tz2, to_utc=False)
return result
else:
# Convert UTC to other timezone
return np.array(_tz_convert_dst(utc_dates, tz2, to_utc=False))
# TODO: cdef scalar version to call from convert_str_to_tsobject
@cython.boundscheck(False)
@cython.wraparound(False)
def tz_localize_to_utc(ndarray[int64_t] vals, object tz, object ambiguous=None,
object errors='raise'):
"""
Localize tzinfo-naive i8 to given time zone (using pytz). If
there are ambiguities in the values, raise AmbiguousTimeError.
Parameters
----------
vals : ndarray[int64_t]
tz : tzinfo or None
ambiguous : str, bool, or arraylike
If arraylike, must have the same length as vals
errors : {"raise", "coerce"}, default "raise"
Returns
-------
localized : ndarray[int64_t]
"""
cdef:
ndarray[int64_t] trans
int64_t[:] deltas, idx_shifted
ndarray ambiguous_array
Py_ssize_t i, idx, pos, ntrans, n = len(vals)
int64_t *tdata
int64_t v, left, right
ndarray[int64_t] result, result_a, result_b, dst_hours
npy_datetimestruct dts
bint infer_dst = False, is_dst = False, fill = False
bint is_coerce = errors == 'coerce', is_raise = errors == 'raise'
# Vectorized version of DstTzInfo.localize
assert is_coerce or is_raise
if tz == UTC or tz is None:
return vals
result = np.empty(n, dtype=np.int64)
if is_tzlocal(tz):
for i in range(n):
v = vals[i]
result[i] = _tz_convert_tzlocal_utc(v, tz, to_utc=True)
return result
if is_string_object(ambiguous):
if ambiguous == 'infer':
infer_dst = True
elif ambiguous == 'NaT':
fill = True
elif isinstance(ambiguous, bool):
is_dst = True
if ambiguous:
ambiguous_array = np.ones(len(vals), dtype=bool)
else:
ambiguous_array = np.zeros(len(vals), dtype=bool)
elif hasattr(ambiguous, '__iter__'):
is_dst = True
if len(ambiguous) != len(vals):
raise ValueError("Length of ambiguous bool-array must be "
"the same size as vals")
ambiguous_array = np.asarray(ambiguous)
trans, deltas, typ = get_dst_info(tz)
tdata = <int64_t*> cnp.PyArray_DATA(trans)
ntrans = len(trans)
result_a = np.empty(n, dtype=np.int64)
result_b = np.empty(n, dtype=np.int64)
result_a.fill(NPY_NAT)
result_b.fill(NPY_NAT)
# left side
idx_shifted = (np.maximum(0, trans.searchsorted(
vals - DAY_NS, side='right') - 1)).astype(np.int64)
for i in range(n):
v = vals[i] - deltas[idx_shifted[i]]
pos = bisect_right_i8(tdata, v, ntrans) - 1
# timestamp falls to the left side of the DST transition
if v + deltas[pos] == vals[i]:
result_a[i] = v
# right side
idx_shifted = (np.maximum(0, trans.searchsorted(
vals + DAY_NS, side='right') - 1)).astype(np.int64)
for i in range(n):
v = vals[i] - deltas[idx_shifted[i]]
pos = bisect_right_i8(tdata, v, ntrans) - 1
# timestamp falls to the right side of the DST transition
if v + deltas[pos] == vals[i]:
result_b[i] = v
if infer_dst:
dst_hours = np.empty(n, dtype=np.int64)
dst_hours.fill(NPY_NAT)
# Get the ambiguous hours (given the above, these are the hours
# where result_a != result_b and neither of them are NAT)
both_nat = np.logical_and(result_a != NPY_NAT, result_b != NPY_NAT)
both_eq = result_a == result_b
trans_idx = np.squeeze(np.nonzero(np.logical_and(both_nat, ~both_eq)))
if trans_idx.size == 1:
stamp = _render_tstamp(vals[trans_idx])
raise pytz.AmbiguousTimeError(
"Cannot infer dst time from %s as there "
"are no repeated times" % stamp)
# Split the array into contiguous chunks (where the difference between
# indices is 1). These are effectively dst transitions in different
# years which is useful for checking that there is not an ambiguous
# transition in an individual year.
if trans_idx.size > 0:
one_diff = np.where(np.diff(trans_idx) != 1)[0] +1
trans_grp = np.array_split(trans_idx, one_diff)
# Iterate through each day, if there are no hours where the
# delta is negative (indicates a repeat of hour) the switch
# cannot be inferred
for grp in trans_grp:
delta = np.diff(result_a[grp])
if grp.size == 1 or np.all(delta > 0):
stamp = _render_tstamp(vals[grp[0]])
raise pytz.AmbiguousTimeError(stamp)
# Find the index for the switch and pull from a for dst and b
# for standard
switch_idx = (delta <= 0).nonzero()[0]
if switch_idx.size > 1:
raise pytz.AmbiguousTimeError(
"There are %i dst switches when "
"there should only be 1." % switch_idx.size)
switch_idx = switch_idx[0] + 1
# Pull the only index and adjust
a_idx = grp[:switch_idx]
b_idx = grp[switch_idx:]
dst_hours[grp] = np.hstack((result_a[a_idx], result_b[b_idx]))
for i in range(n):
left = result_a[i]
right = result_b[i]
if vals[i] == NPY_NAT:
result[i] = vals[i]
elif left != NPY_NAT and right != NPY_NAT:
if left == right:
result[i] = left
else:
if infer_dst and dst_hours[i] != NPY_NAT:
result[i] = dst_hours[i]
elif is_dst:
if ambiguous_array[i]:
result[i] = left
else:
result[i] = right
elif fill:
result[i] = NPY_NAT
else:
stamp = _render_tstamp(vals[i])
raise pytz.AmbiguousTimeError(
"Cannot infer dst time from %r, try using the "
"'ambiguous' argument" % stamp)
elif left != NPY_NAT:
result[i] = left
elif right != NPY_NAT:
result[i] = right
else:
if is_coerce:
result[i] = NPY_NAT
else: